Update README.md
Browse files
README.md
CHANGED
@@ -11,23 +11,73 @@ language:
|
|
11 |
- en
|
12 |
---
|
13 |
|
14 |
-
# How to Run
|
15 |
基本的にhugging face modelとしてloadすればOK。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
コード例
|
17 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
bnb_config = BitsAndBytesConfig(
|
19 |
load_in_4bit=True,
|
20 |
bnb_4bit_quant_type="nf4",
|
21 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
22 |
bnb_4bit_use_double_quant=False,
|
23 |
)
|
|
|
24 |
model = AutoModelForCausalLM.from_pretrained(
|
25 |
-
|
26 |
quantization_config=bnb_config,
|
27 |
device_map="auto",
|
28 |
token = HF_TOKEN
|
29 |
)
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
```
|
32 |
|
33 |
# Model Training Information
|
|
|
11 |
- en
|
12 |
---
|
13 |
|
14 |
+
# How to Run this Model
|
15 |
基本的にhugging face modelとしてloadすればOK。
|
16 |
+
** elyza-tasks-100-TV_0.jsonl を事前に同じフォルダーに置いてください。 **
|
17 |
+
|
18 |
+
|
19 |
+
環境準備
|
20 |
+
|
21 |
+
```
|
22 |
+
!pip install -U bitsandbytes
|
23 |
+
!pip install -U transformers
|
24 |
+
!pip install -U accelerate
|
25 |
+
!pip install -U datasets
|
26 |
+
```
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
コード例
|
31 |
```
|
32 |
+
from transformers import (
|
33 |
+
AutoModelForCausalLM,
|
34 |
+
AutoTokenizer,
|
35 |
+
BitsAndBytesConfig,
|
36 |
+
)
|
37 |
+
import torch
|
38 |
+
from tqdm import tqdm
|
39 |
+
import json
|
40 |
+
|
41 |
+
HF_TOKEN = "hf_ddlNeFZWWURoIBcXhAlVIxAYErhqLntJjYn"
|
42 |
+
model_name = "AlHfac/llm-jp-3-13b-it"
|
43 |
+
|
44 |
+
# QLoRA config
|
45 |
bnb_config = BitsAndBytesConfig(
|
46 |
load_in_4bit=True,
|
47 |
bnb_4bit_quant_type="nf4",
|
48 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
49 |
bnb_4bit_use_double_quant=False,
|
50 |
)
|
51 |
+
# Load model
|
52 |
model = AutoModelForCausalLM.from_pretrained(
|
53 |
+
model_name,
|
54 |
quantization_config=bnb_config,
|
55 |
device_map="auto",
|
56 |
token = HF_TOKEN
|
57 |
)
|
58 |
+
|
59 |
+
# Load tokenizer
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token = HF_TOKEN)
|
61 |
+
|
62 |
+
# Evaluate
|
63 |
+
datasets = []
|
64 |
+
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
|
65 |
+
item = ""
|
66 |
+
for line in f:
|
67 |
+
line = line.strip()
|
68 |
+
item += line
|
69 |
+
if item.endswith("}"):
|
70 |
+
datasets.append(json.loads(item))
|
71 |
+
item = ""
|
72 |
+
|
73 |
+
# Generate jsonl
|
74 |
+
import re
|
75 |
+
model_name = re.sub(".*/", "", model_name)
|
76 |
+
with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f:
|
77 |
+
for result in results:
|
78 |
+
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
|
79 |
+
f.write('\n')
|
80 |
+
|
81 |
```
|
82 |
|
83 |
# Model Training Information
|