--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # How to Run this Model 基本的にhugging face modelとしてloadすればOK。 **elyza-tasks-100-TV_0.jsonl を事前に同じフォルダーに置いてください。** **HF_TOKENの入れ替えを忘れないでください** 環境準備 ``` !pip install -U bitsandbytes !pip install -U transformers !pip install -U accelerate !pip install -U datasets ``` コード例 ``` from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) import torch from tqdm import tqdm import json HF_TOKEN = ADD YOUR OWN TOKEN model_name = "AlHfac/llm-jp-3-13b-it" # QLoRA config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=False, ) # Load model model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map="auto", token = HF_TOKEN ) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token = HF_TOKEN) # Evaluate datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" # Generate jsonl import re model_name = re.sub(".*/", "", model_name) with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters f.write('\n') ``` # Model Training Information - **Developed by:** AlHfac - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth)