Update README.md
Browse files
README.md
CHANGED
@@ -11,12 +11,125 @@ language:
|
|
11 |
- en
|
12 |
---
|
13 |
|
14 |
-
# Uploaded
|
15 |
|
16 |
- **Developed by:** ahmeterdempmk
|
17 |
- **License:** apache-2.0
|
18 |
- **Finetuned from model :** unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit
|
19 |
|
20 |
-
This
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
- en
|
12 |
---
|
13 |
|
14 |
+
# Uploaded Model
|
15 |
|
16 |
- **Developed by:** ahmeterdempmk
|
17 |
- **License:** apache-2.0
|
18 |
- **Finetuned from model :** unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit
|
19 |
|
20 |
+
This LlaMa model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
21 |
|
22 |
+
# Pipeline
|
23 |
+
```py
|
24 |
+
import torch
|
25 |
+
from unsloth import FastLanguageModel
|
26 |
+
from snac import SNAC
|
27 |
+
from IPython.display import Audio, display
|
28 |
+
import numpy as np
|
29 |
+
|
30 |
+
TOKENISER_LENGTH = 128256
|
31 |
+
START_OF_TEXT = 128000
|
32 |
+
END_OF_TEXT = 128009
|
33 |
+
START_OF_HUMAN = TOKENISER_LENGTH + 3
|
34 |
+
END_OF_HUMAN = TOKENISER_LENGTH + 4
|
35 |
+
START_OF_AI = TOKENISER_LENGTH + 5
|
36 |
+
END_OF_AI = TOKENISER_LENGTH + 6
|
37 |
+
|
38 |
+
GEN_START_TOKEN = 128259
|
39 |
+
GEN_EOS_TOKEN = 128258
|
40 |
+
GEN_END_EXTRA_TOKEN = 128260
|
41 |
+
GEN_REMOVE_TOKEN = 128258
|
42 |
+
CODE_OFFSET = 128266
|
43 |
+
|
44 |
+
def load_models(HF_TOKEN):
|
45 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
46 |
+
model_name="ahmeterdempmk/Orpheus-3B-0.1-ft-Elise",
|
47 |
+
max_seq_length=2048,
|
48 |
+
token=HF_TOKEN
|
49 |
+
)
|
50 |
+
FastLanguageModel.for_inference(model)
|
51 |
+
|
52 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz", token=HF_TOKEN)
|
53 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
54 |
+
snac_model = snac_model.to(device)
|
55 |
+
|
56 |
+
return model, tokenizer, snac_model, device
|
57 |
+
|
58 |
+
def redistribute_codes(code_list, snac_model, device):
|
59 |
+
layer_1, layer_2, layer_3 = [], [], []
|
60 |
+
num_groups = len(code_list) // 7
|
61 |
+
for i in range(num_groups):
|
62 |
+
group = code_list[7 * i: 7 * i + 7]
|
63 |
+
layer_1.append(group[0])
|
64 |
+
layer_2.append(group[1] - 4096)
|
65 |
+
layer_3.append(group[2] - (2 * 4096))
|
66 |
+
layer_3.append(group[3] - (3 * 4096))
|
67 |
+
layer_2.append(group[4] - (4 * 4096))
|
68 |
+
layer_3.append(group[5] - (5 * 4096))
|
69 |
+
layer_3.append(group[6] - (6 * 4096))
|
70 |
+
codes = [
|
71 |
+
torch.tensor(layer_1).unsqueeze(0).to(device),
|
72 |
+
torch.tensor(layer_2).unsqueeze(0).to(device),
|
73 |
+
torch.tensor(layer_3).unsqueeze(0).to(device)
|
74 |
+
]
|
75 |
+
|
76 |
+
audio_waveform = snac_model.decode(codes)
|
77 |
+
return audio_waveform
|
78 |
+
|
79 |
+
def tts_pipeline(prompt, model, tokenizer, snac_model, device):
|
80 |
+
input_ids_tensor = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
81 |
+
|
82 |
+
start_token = torch.tensor([[GEN_START_TOKEN]], dtype=torch.int64, device=device)
|
83 |
+
end_tokens = torch.tensor([[END_OF_TEXT, GEN_END_EXTRA_TOKEN]], dtype=torch.int64, device=device)
|
84 |
+
modified_input_ids = torch.cat([start_token, input_ids_tensor, end_tokens], dim=1)
|
85 |
+
|
86 |
+
attention_mask = torch.ones_like(modified_input_ids, device=device)
|
87 |
+
|
88 |
+
generated_ids = model.generate(
|
89 |
+
input_ids=modified_input_ids,
|
90 |
+
attention_mask=attention_mask,
|
91 |
+
max_new_tokens=1200,
|
92 |
+
do_sample=True,
|
93 |
+
temperature=0.6,
|
94 |
+
top_p=0.95,
|
95 |
+
repetition_penalty=1.1,
|
96 |
+
num_return_sequences=1,
|
97 |
+
eos_token_id=GEN_EOS_TOKEN,
|
98 |
+
use_cache=True
|
99 |
+
)
|
100 |
+
|
101 |
+
marker_token = 128257
|
102 |
+
token_indices = (generated_ids == marker_token).nonzero(as_tuple=True)
|
103 |
+
if len(token_indices[1]) > 0:
|
104 |
+
last_marker = token_indices[1][-1].item()
|
105 |
+
cropped_tensor = generated_ids[:, last_marker + 1:]
|
106 |
+
else:
|
107 |
+
cropped_tensor = generated_ids
|
108 |
+
|
109 |
+
processed_tokens = cropped_tensor[cropped_tensor != GEN_REMOVE_TOKEN]
|
110 |
+
|
111 |
+
row_length = processed_tokens.size(0)
|
112 |
+
new_length = (row_length // 7) * 7
|
113 |
+
trimmed_tokens = processed_tokens[:new_length]
|
114 |
+
|
115 |
+
code_list = (trimmed_tokens - CODE_OFFSET).tolist()
|
116 |
+
|
117 |
+
audio_waveform = redistribute_codes(code_list, snac_model, device)
|
118 |
+
return audio_waveform
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
HF_TOKEN = "YOUR_TOKEN"
|
122 |
+
model, tokenizer, snac_model, device = load_models(HF_TOKEN)
|
123 |
+
|
124 |
+
prompt = "In the image, there is 2 man riding bike."
|
125 |
+
audio_output = tts_pipeline(prompt, model, tokenizer, snac_model, device)
|
126 |
+
|
127 |
+
audio_array = audio_output.detach().cpu().numpy()
|
128 |
+
audio_array = np.squeeze(audio_array)
|
129 |
+
|
130 |
+
if audio_array.ndim not in [1, 2]:
|
131 |
+
raise ValueError("Array audio input must be a 1D or 2D array, but got shape: " + str(audio_array.shape))
|
132 |
+
|
133 |
+
display(Audio(audio_array, rate=24000))
|
134 |
+
print("Audio generation complete.")
|
135 |
+
```
|