Update README.md
Browse files
README.md
CHANGED
@@ -1,22 +1,62 @@
|
|
1 |
---
|
2 |
-
base_model: unsloth/qwen2.5-coder-0.5b-instruct-bnb-4bit
|
3 |
tags:
|
4 |
- text-generation-inference
|
5 |
- transformers
|
6 |
-
- unsloth
|
7 |
-
- qwen2
|
8 |
- trl
|
|
|
9 |
license: apache-2.0
|
10 |
language:
|
11 |
- en
|
12 |
---
|
13 |
|
14 |
-
#
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
19 |
|
20 |
-
|
|
|
|
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- text-generation-inference
|
4 |
- transformers
|
|
|
|
|
5 |
- trl
|
6 |
+
- sft
|
7 |
license: apache-2.0
|
8 |
language:
|
9 |
- en
|
10 |
---
|
11 |
|
12 |
+
# INFERENCE
|
13 |
|
14 |
+
```python
|
15 |
+
import time
|
16 |
+
import torch
|
17 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
|
18 |
|
19 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
20 |
+
finetuned_model = AutoModelForCausalLM.from_pretrained("AquilaX-AI/security_assistant_2")
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained("AquilaX-AI/security_assistant")
|
22 |
|
23 |
+
finetuned_model.to(device)
|
24 |
+
|
25 |
+
prompt = """<|im_start|>system
|
26 |
+
You are a helpful AI assistant named Securitron<|im_end|>
|
27 |
+
<|im_start|>user
|
28 |
+
cwe_id:CWE-20
|
29 |
+
cwe_name:Improper Input Validation
|
30 |
+
affected_line:Pattern Undefined (v3)
|
31 |
+
partial_code:example: c4d5ea2f-81a2-4a05-bcd3-202126ae21df
|
32 |
+
name:
|
33 |
+
type: string
|
34 |
+
example: Toolbox
|
35 |
+
serial:
|
36 |
+
file_name:itemit_openapi.yaml
|
37 |
+
status:True Positive
|
38 |
+
reason: There is no pattern property that could lead to insufficient input validation.
|
39 |
+
remediation_action: Always define a pattern to ensure strict input validation.
|
40 |
+
|
41 |
+
How to fix this?<|im_end|>
|
42 |
+
<|im_start|>assistant
|
43 |
+
"""
|
44 |
+
|
45 |
+
s = time.time()
|
46 |
+
|
47 |
+
encodeds = tokenizer(prompt, return_tensors="pt",truncation=True).input_ids.to(device)
|
48 |
+
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
|
49 |
+
|
50 |
+
# Increase max_new_tokens if needed
|
51 |
+
response = finetuned_model.generate(
|
52 |
+
input_ids=encodeds,
|
53 |
+
streamer=text_streamer,
|
54 |
+
max_new_tokens=512,
|
55 |
+
use_cache=True,
|
56 |
+
pad_token_id=151645,
|
57 |
+
eos_token_id=151645,
|
58 |
+
num_return_sequences=1
|
59 |
+
)
|
60 |
+
e = time.time()
|
61 |
+
print(f'time taken:{e-s}')
|
62 |
+
```
|