--- base_model: MBZUAI/swiftformer-xs tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swiftformer-xs-OT results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8548387096774194 --- # swiftformer-xs-OT This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co/MBZUAI/swiftformer-xs) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4956 - Accuracy: 0.8548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0015 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.89 | 4 | 1.3804 | 0.5161 | | No log | 2.0 | 9 | 1.2554 | 0.5323 | | 1.3469 | 2.89 | 13 | 0.9725 | 0.6613 | | 1.3469 | 4.0 | 18 | 0.7086 | 0.7581 | | 0.9831 | 4.89 | 22 | 0.8856 | 0.7258 | | 0.9831 | 6.0 | 27 | 0.7724 | 0.7581 | | 0.7441 | 6.89 | 31 | 0.8190 | 0.7258 | | 0.7441 | 8.0 | 36 | 0.6897 | 0.7742 | | 0.6939 | 8.89 | 40 | 0.6599 | 0.7258 | | 0.6939 | 10.0 | 45 | 0.6288 | 0.7742 | | 0.6939 | 10.89 | 49 | 0.6333 | 0.7581 | | 0.5861 | 12.0 | 54 | 0.6206 | 0.7742 | | 0.5861 | 12.89 | 58 | 0.5263 | 0.7903 | | 0.5018 | 14.0 | 63 | 0.5836 | 0.8065 | | 0.5018 | 14.89 | 67 | 0.6125 | 0.7419 | | 0.4642 | 16.0 | 72 | 0.5431 | 0.8065 | | 0.4642 | 16.89 | 76 | 0.5893 | 0.8387 | | 0.4064 | 18.0 | 81 | 0.4997 | 0.8065 | | 0.4064 | 18.89 | 85 | 0.5474 | 0.7742 | | 0.4275 | 20.0 | 90 | 0.6748 | 0.7903 | | 0.4275 | 20.89 | 94 | 0.6369 | 0.7581 | | 0.4275 | 22.0 | 99 | 0.5610 | 0.7742 | | 0.373 | 22.89 | 103 | 0.5260 | 0.7903 | | 0.373 | 24.0 | 108 | 0.5416 | 0.8387 | | 0.2931 | 24.89 | 112 | 0.5146 | 0.8387 | | 0.2931 | 26.0 | 117 | 0.5180 | 0.7742 | | 0.3135 | 26.89 | 121 | 0.5169 | 0.8226 | | 0.3135 | 28.0 | 126 | 0.5491 | 0.8387 | | 0.2342 | 28.89 | 130 | 0.5385 | 0.8387 | | 0.2342 | 30.0 | 135 | 0.5456 | 0.8387 | | 0.2342 | 30.89 | 139 | 0.4956 | 0.8548 | | 0.2411 | 32.0 | 144 | 0.5254 | 0.8226 | | 0.2411 | 32.89 | 148 | 0.5533 | 0.8387 | | 0.2135 | 34.0 | 153 | 0.5613 | 0.8387 | | 0.2135 | 34.89 | 157 | 0.5748 | 0.8226 | | 0.1904 | 35.56 | 160 | 0.5844 | 0.8387 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0