CodeGoat24 commited on
Commit
22af176
·
verified ·
1 Parent(s): 65237ab

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +121 -3
README.md CHANGED
@@ -1,3 +1,121 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - CodeGoat24/HPD
5
+ - CodeGoat24/OIP
6
+ - CodeGoat24/EvalMuse
7
+ - CodeGoat24/ShareGPTVideo-DPO
8
+ - CodeGoat24/LLaVA-Critic-113k
9
+ - CodeGoat24/VideoDPO
10
+ - CodeGoat24/Text-2-Video-Human-Preferences
11
+ - CodeGoat24/OpenAI-4o_t2i_human_preference
12
+ - CodeGoat24/ImageGen_Reward_Cold_Start
13
+ base_model:
14
+ - CodeGoat24/UnifiedReward-7b
15
+ ---
16
+
17
+ ## Model Summary
18
+
19
+ `Unified-Reward-Think-7b` is the first unified multimodal CoT reward model, capable of multi-dimensional, step-by-step long-chain reasoning for both visual understanding and generation reward tasks.
20
+
21
+ For further details, please refer to the following resources:
22
+ <!-- - 📰 Paper: https://arxiv.org/pdf/2503.05236 -->
23
+ - 🪐 Project Page: https://codegoat24.github.io/UnifiedReward/think
24
+ - 🤗 Model Collections: https://huggingface.co/collections/CodeGoat24/unifiedreward-models-67c3008148c3a380d15ac63a
25
+ - 🤗 Dataset Collections: https://huggingface.co/collections/CodeGoat24/unifiedreward-training-data-67c300d4fd5eff00fa7f1ede
26
+ - 👋 Point of Contact: [Yibin Wang](https://codegoat24.github.io)
27
+
28
+ ### Quick Start
29
+ All inference codes are provided in our [github](https://github.com/CodeGoat24/UnifiedReward/tree/main/UnifiedReward-Think).
30
+
31
+ We take image understanding assessment as example here:
32
+ ~~~python
33
+ # pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
34
+ from llava.model.builder import load_pretrained_model
35
+ from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
36
+ from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
37
+ from llava.conversation import conv_templates, SeparatorStyle
38
+
39
+ from PIL import Image
40
+ import requests
41
+ import copy
42
+ import torch
43
+
44
+ import sys
45
+ import warnings
46
+ import os
47
+
48
+
49
+ warnings.filterwarnings("ignore")
50
+ pretrained = "CodeGoat24/UnifiedReward-Think-7b"
51
+ model_name = "llava_qwen"
52
+ device = "cuda"
53
+ device_map = "auto"
54
+ tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map) # Add any other thing you want to pass in llava_model_args
55
+
56
+ model.eval()
57
+
58
+ url = "https://github.com/LLaVA-VL/blog/blob/main/2024-10-03-llava-critic/static/images/critic_img_seven.png?raw=True"
59
+ image = Image.open(requests.get(url, stream=True).raw)
60
+ image_tensor = process_images([image], image_processor, model.config)
61
+ image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor]
62
+
63
+ conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
64
+ Query = 'What does this image present?'
65
+ R1 = 'The image is a black and white sketch of a line that appears to be in the shape of a cross. The line is a simple and straightforward representation of the cross shape, with two straight lines intersecting at a point.'
66
+ R2 = 'This is a handwritten number seven.'
67
+
68
+ question = ("<image>\nGiven a question and a reference image, please analyze in detail the two provided answers (Answer 1 and Answer 2). " \
69
+ "Evaluate them based on the following three core dimensions:\n" \
70
+ "1. Semantic accuracy: How well the answer reflects the visual content of the image\n" \
71
+ "2. Correctness: Whether the answer is logically and factually correct\n" \
72
+ "3. Clarity: Whether the answer is clearly and fluently expressed\n" \
73
+ "You may also consider additional dimensions if you find them relevant (e.g., reasoning ability, attention to detail, multimodal grounding, etc.). " \
74
+ "For each dimension, provide a score from 1 to 10 for both answers, and briefly explain your reasoning. " \
75
+ "Then, compute the total score for each answer by explicitly adding the scores for all dimensions and showing the full calculation. " \
76
+ "Enclose your full reasoning within <think> and </think> tags. " \
77
+ "Then, in the <answer> tag, output exactly one of the following: 'Answer 1 is better' or 'Answer 2 is better'. No other text is allowed in the <answer> section.\n\n" \
78
+ "Example format:\n" \
79
+ "<think>\n" \
80
+ "1. Semantic accuracy: Answer 1 (9/10) - ...; Answer 2 (7/10) - ...\n" \
81
+ "2. Correctness: Answer 1 (8/10) - ...; Answer 2 (7/10) - ...\n" \
82
+ "3. Clarity: Answer 1 (9/10) - ...; Answer 2 (8/10) - ...\n" \
83
+ "[Additional dimensions if any]: Answer 1 (6/10) - ...; Answer 2 (7/10) - ...\n" \
84
+ "Total score:\nAnswer 1: 9+8+9+6=32\nAnswer 2: 7+7+8+7=29\n" \
85
+ "</think>\n" \
86
+ "<answer>Answer 1 is better</answer>\n\n" \
87
+ "**Note: In the example above, scores and the final answer are placeholders meant only to demonstrate the format. Your actual evaluation should be based on the quality of two given answers.**\n\n"
88
+ f"Your task is provided as follows:\nQuestion: [{Query}]\nAnswer 1: [{R1}]\nAnswer 2: [{R2}]")
89
+
90
+ conv = copy.deepcopy(conv_templates[conv_template])
91
+ conv.append_message(conv.roles[0], question)
92
+ conv.append_message(conv.roles[1], None)
93
+ prompt_question = conv.get_prompt()
94
+
95
+ input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
96
+ image_sizes = [image.size]
97
+
98
+
99
+ cont = model.generate(
100
+ input_ids,
101
+ images=image_tensor,
102
+ image_sizes=image_sizes,
103
+ do_sample=False,
104
+ temperature=0,
105
+ max_new_tokens=4096,
106
+ )
107
+ text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
108
+ print(text_outputs[0])
109
+ ~~~
110
+
111
+
112
+ ## Citation
113
+
114
+ ```
115
+ @article{UnifiedReward,
116
+ title={Unified Multimodal Chain-of-Thought Reward Model through Reinforcement Fine-Tuning.},
117
+ author={Wang, Yibin and Li, Zhimin and Zang, Yuhang and Wang, Chunyu and Lu, Qinglin and Jin, Cheng and Wang, Jiaqi},
118
+ journal={arXiv preprint arXiv:},
119
+ year={2025}
120
+ }
121
+ ```