ColorfulAI commited on
Commit
a690da7
·
1 Parent(s): 9f60967
README.md CHANGED
@@ -1,3 +1,85 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+ # LongVA-7B-Qwen2-Audio
6
+
7
+
8
+ LongVA-7B-Qwen2-Audio is an extension of [LongVA-7B](https://github.com/EvolvingLMMs-Lab/LongVA), further trained using the [LLaVA-NeXT-Audio](https://huggingface.co/datasets/ColorfulAI/LLaVA-NeXT-Audio) dataset.
9
+
10
+
11
+ ## Usage
12
+
13
+ *Please refer to [M4](https://github.com/patrick-tssn/M4) to install relvevant packages*
14
+
15
+ ```python
16
+
17
+ import os
18
+ from PIL import Image
19
+ import numpy as np
20
+ import torchaudio
21
+ import torch
22
+ from decord import VideoReader, cpu
23
+ import whisper
24
+ # fix seed
25
+ torch.manual_seed(0)
26
+
27
+ from intersuit.model.builder import load_pretrained_model
28
+ from intersuit.mm_utils import tokenizer_image_speech_tokens, process_images
29
+ from intersuit.constants import IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX
30
+
31
+ import warnings
32
+ warnings.filterwarnings("ignore")
33
+
34
+ model_path = "ColorfulAI/LongVA-7B-Qwen2-Audio"
35
+ video_path = "local_demo/assets/water.mp4"
36
+ audio_path = "local_demo/wav/infer.wav"
37
+ max_frames_num = 16 # you can change this to several thousands so long you GPU memory can handle it :)
38
+ gen_kwargs = {"do_sample": True, "temperature": 0.5, "top_p": None, "num_beams": 1, "use_cache": True, "max_new_tokens": 1024}
39
+ tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None, "llava_qwen", device_map="cuda:0")
40
+
41
+ query = "Give a detailed caption of the video as if I am blind."
42
+ query = None # comment this to use ChatTTS to convert the query to audio
43
+
44
+ #video input
45
+ prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image><|im_end|>\n<|im_start|>user\n<speech>\n<|im_end|>\n<|im_start|>assistant\n"
46
+ input_ids = tokenizer_image_speech_tokens(prompt, tokenizer, IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device)
47
+ vr = VideoReader(video_path, ctx=cpu(0))
48
+ total_frame_num = len(vr)
49
+ uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int)
50
+ frame_idx = uniform_sampled_frames.tolist()
51
+ frames = vr.get_batch(frame_idx).asnumpy()
52
+ video_tensor = image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].to(model.device, dtype=torch.float16)
53
+
54
+ #audio input
55
+ # process speech for input question
56
+ if query is not None:
57
+ import ChatTTS
58
+ chat = ChatTTS.Chat()
59
+ chat.load(source='local', compile=True)
60
+ audio_path = "./local_demo/wav/" + "infer.wav"
61
+ if os.path.exists(audio_path): os.remove(audio_path) # refresh
62
+ if not os.path.exists(audio_path):
63
+ wav = chat.infer(query)
64
+ try:
65
+ torchaudio.save(audio_path, torch.from_numpy(wav).unsqueeze(0), 24000)
66
+ except:
67
+ torchaudio.save(audio_path, torch.from_numpy(wav), 24000)
68
+ print(f"Human: {query}")
69
+
70
+ else:
71
+ print("Human: <audio>")
72
+
73
+ speech = whisper.load_audio(audio_path)
74
+ speech = whisper.pad_or_trim(speech)
75
+ speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0).to(device=model.device, dtype=torch.float16)
76
+ speech_length = torch.LongTensor([speech.shape[0]]).to(model.device)
77
+
78
+ with torch.inference_mode():
79
+ output_ids = model.generate(input_ids, images=[video_tensor], modalities=["video"], speeches=speech.unsqueeze(0), speech_lengths=speech_length, **gen_kwargs)
80
+ outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
81
+ print(f"Agent: {outputs}")
82
+
83
+ ```
84
+
85
+
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
config.json ADDED
@@ -0,0 +1,861 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/longva7b-qwen2-voiceassistant",
3
+ "architectures": [
4
+ "LlavaQwenForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "image_aspect_ratio": "anyres",
12
+ "image_crop_resolution": null,
13
+ "image_grid_pinpoints": [
14
+ [
15
+ 336,
16
+ 672
17
+ ],
18
+ [
19
+ 336,
20
+ 1008
21
+ ],
22
+ [
23
+ 336,
24
+ 1344
25
+ ],
26
+ [
27
+ 336,
28
+ 1680
29
+ ],
30
+ [
31
+ 336,
32
+ 2016
33
+ ],
34
+ [
35
+ 336,
36
+ 2352
37
+ ],
38
+ [
39
+ 336,
40
+ 2688
41
+ ],
42
+ [
43
+ 336,
44
+ 3024
45
+ ],
46
+ [
47
+ 336,
48
+ 3360
49
+ ],
50
+ [
51
+ 336,
52
+ 3696
53
+ ],
54
+ [
55
+ 336,
56
+ 4032
57
+ ],
58
+ [
59
+ 336,
60
+ 4368
61
+ ],
62
+ [
63
+ 336,
64
+ 4704
65
+ ],
66
+ [
67
+ 336,
68
+ 5040
69
+ ],
70
+ [
71
+ 336,
72
+ 5376
73
+ ],
74
+ [
75
+ 336,
76
+ 5712
77
+ ],
78
+ [
79
+ 336,
80
+ 6048
81
+ ],
82
+ [
83
+ 336,
84
+ 6384
85
+ ],
86
+ [
87
+ 336,
88
+ 6720
89
+ ],
90
+ [
91
+ 336,
92
+ 7056
93
+ ],
94
+ [
95
+ 336,
96
+ 7392
97
+ ],
98
+ [
99
+ 336,
100
+ 7728
101
+ ],
102
+ [
103
+ 336,
104
+ 8064
105
+ ],
106
+ [
107
+ 336,
108
+ 8400
109
+ ],
110
+ [
111
+ 336,
112
+ 8736
113
+ ],
114
+ [
115
+ 336,
116
+ 9072
117
+ ],
118
+ [
119
+ 336,
120
+ 9408
121
+ ],
122
+ [
123
+ 336,
124
+ 9744
125
+ ],
126
+ [
127
+ 336,
128
+ 10080
129
+ ],
130
+ [
131
+ 336,
132
+ 10416
133
+ ],
134
+ [
135
+ 336,
136
+ 10752
137
+ ],
138
+ [
139
+ 336,
140
+ 11088
141
+ ],
142
+ [
143
+ 336,
144
+ 11424
145
+ ],
146
+ [
147
+ 336,
148
+ 11760
149
+ ],
150
+ [
151
+ 336,
152
+ 12096
153
+ ],
154
+ [
155
+ 336,
156
+ 12432
157
+ ],
158
+ [
159
+ 336,
160
+ 12768
161
+ ],
162
+ [
163
+ 336,
164
+ 13104
165
+ ],
166
+ [
167
+ 336,
168
+ 13440
169
+ ],
170
+ [
171
+ 336,
172
+ 13776
173
+ ],
174
+ [
175
+ 336,
176
+ 14112
177
+ ],
178
+ [
179
+ 336,
180
+ 14448
181
+ ],
182
+ [
183
+ 336,
184
+ 14784
185
+ ],
186
+ [
187
+ 336,
188
+ 15120
189
+ ],
190
+ [
191
+ 336,
192
+ 15456
193
+ ],
194
+ [
195
+ 336,
196
+ 15792
197
+ ],
198
+ [
199
+ 336,
200
+ 16128
201
+ ],
202
+ [
203
+ 336,
204
+ 16464
205
+ ],
206
+ [
207
+ 672,
208
+ 336
209
+ ],
210
+ [
211
+ 672,
212
+ 672
213
+ ],
214
+ [
215
+ 672,
216
+ 1008
217
+ ],
218
+ [
219
+ 672,
220
+ 1344
221
+ ],
222
+ [
223
+ 672,
224
+ 1680
225
+ ],
226
+ [
227
+ 672,
228
+ 2016
229
+ ],
230
+ [
231
+ 672,
232
+ 2352
233
+ ],
234
+ [
235
+ 672,
236
+ 2688
237
+ ],
238
+ [
239
+ 672,
240
+ 3024
241
+ ],
242
+ [
243
+ 672,
244
+ 3360
245
+ ],
246
+ [
247
+ 672,
248
+ 3696
249
+ ],
250
+ [
251
+ 672,
252
+ 4032
253
+ ],
254
+ [
255
+ 672,
256
+ 4368
257
+ ],
258
+ [
259
+ 672,
260
+ 4704
261
+ ],
262
+ [
263
+ 672,
264
+ 5040
265
+ ],
266
+ [
267
+ 672,
268
+ 5376
269
+ ],
270
+ [
271
+ 672,
272
+ 5712
273
+ ],
274
+ [
275
+ 672,
276
+ 6048
277
+ ],
278
+ [
279
+ 672,
280
+ 6384
281
+ ],
282
+ [
283
+ 672,
284
+ 6720
285
+ ],
286
+ [
287
+ 672,
288
+ 7056
289
+ ],
290
+ [
291
+ 672,
292
+ 7392
293
+ ],
294
+ [
295
+ 672,
296
+ 7728
297
+ ],
298
+ [
299
+ 672,
300
+ 8064
301
+ ],
302
+ [
303
+ 1008,
304
+ 336
305
+ ],
306
+ [
307
+ 1008,
308
+ 672
309
+ ],
310
+ [
311
+ 1008,
312
+ 1008
313
+ ],
314
+ [
315
+ 1008,
316
+ 1344
317
+ ],
318
+ [
319
+ 1008,
320
+ 1680
321
+ ],
322
+ [
323
+ 1008,
324
+ 2016
325
+ ],
326
+ [
327
+ 1008,
328
+ 2352
329
+ ],
330
+ [
331
+ 1008,
332
+ 2688
333
+ ],
334
+ [
335
+ 1008,
336
+ 3024
337
+ ],
338
+ [
339
+ 1008,
340
+ 3360
341
+ ],
342
+ [
343
+ 1008,
344
+ 3696
345
+ ],
346
+ [
347
+ 1008,
348
+ 4032
349
+ ],
350
+ [
351
+ 1008,
352
+ 4368
353
+ ],
354
+ [
355
+ 1008,
356
+ 4704
357
+ ],
358
+ [
359
+ 1008,
360
+ 5040
361
+ ],
362
+ [
363
+ 1008,
364
+ 5376
365
+ ],
366
+ [
367
+ 1344,
368
+ 336
369
+ ],
370
+ [
371
+ 1344,
372
+ 672
373
+ ],
374
+ [
375
+ 1344,
376
+ 1008
377
+ ],
378
+ [
379
+ 1344,
380
+ 1344
381
+ ],
382
+ [
383
+ 1344,
384
+ 1680
385
+ ],
386
+ [
387
+ 1344,
388
+ 2016
389
+ ],
390
+ [
391
+ 1344,
392
+ 2352
393
+ ],
394
+ [
395
+ 1344,
396
+ 2688
397
+ ],
398
+ [
399
+ 1344,
400
+ 3024
401
+ ],
402
+ [
403
+ 1344,
404
+ 3360
405
+ ],
406
+ [
407
+ 1344,
408
+ 3696
409
+ ],
410
+ [
411
+ 1344,
412
+ 4032
413
+ ],
414
+ [
415
+ 1680,
416
+ 336
417
+ ],
418
+ [
419
+ 1680,
420
+ 672
421
+ ],
422
+ [
423
+ 1680,
424
+ 1008
425
+ ],
426
+ [
427
+ 1680,
428
+ 1344
429
+ ],
430
+ [
431
+ 1680,
432
+ 1680
433
+ ],
434
+ [
435
+ 1680,
436
+ 2016
437
+ ],
438
+ [
439
+ 1680,
440
+ 2352
441
+ ],
442
+ [
443
+ 1680,
444
+ 2688
445
+ ],
446
+ [
447
+ 1680,
448
+ 3024
449
+ ],
450
+ [
451
+ 2016,
452
+ 336
453
+ ],
454
+ [
455
+ 2016,
456
+ 672
457
+ ],
458
+ [
459
+ 2016,
460
+ 1008
461
+ ],
462
+ [
463
+ 2016,
464
+ 1344
465
+ ],
466
+ [
467
+ 2016,
468
+ 1680
469
+ ],
470
+ [
471
+ 2016,
472
+ 2016
473
+ ],
474
+ [
475
+ 2016,
476
+ 2352
477
+ ],
478
+ [
479
+ 2016,
480
+ 2688
481
+ ],
482
+ [
483
+ 2352,
484
+ 336
485
+ ],
486
+ [
487
+ 2352,
488
+ 672
489
+ ],
490
+ [
491
+ 2352,
492
+ 1008
493
+ ],
494
+ [
495
+ 2352,
496
+ 1344
497
+ ],
498
+ [
499
+ 2352,
500
+ 1680
501
+ ],
502
+ [
503
+ 2352,
504
+ 2016
505
+ ],
506
+ [
507
+ 2352,
508
+ 2352
509
+ ],
510
+ [
511
+ 2688,
512
+ 336
513
+ ],
514
+ [
515
+ 2688,
516
+ 672
517
+ ],
518
+ [
519
+ 2688,
520
+ 1008
521
+ ],
522
+ [
523
+ 2688,
524
+ 1344
525
+ ],
526
+ [
527
+ 2688,
528
+ 1680
529
+ ],
530
+ [
531
+ 2688,
532
+ 2016
533
+ ],
534
+ [
535
+ 3024,
536
+ 336
537
+ ],
538
+ [
539
+ 3024,
540
+ 672
541
+ ],
542
+ [
543
+ 3024,
544
+ 1008
545
+ ],
546
+ [
547
+ 3024,
548
+ 1344
549
+ ],
550
+ [
551
+ 3024,
552
+ 1680
553
+ ],
554
+ [
555
+ 3360,
556
+ 336
557
+ ],
558
+ [
559
+ 3360,
560
+ 672
561
+ ],
562
+ [
563
+ 3360,
564
+ 1008
565
+ ],
566
+ [
567
+ 3360,
568
+ 1344
569
+ ],
570
+ [
571
+ 3696,
572
+ 336
573
+ ],
574
+ [
575
+ 3696,
576
+ 672
577
+ ],
578
+ [
579
+ 3696,
580
+ 1008
581
+ ],
582
+ [
583
+ 3696,
584
+ 1344
585
+ ],
586
+ [
587
+ 4032,
588
+ 336
589
+ ],
590
+ [
591
+ 4032,
592
+ 672
593
+ ],
594
+ [
595
+ 4032,
596
+ 1008
597
+ ],
598
+ [
599
+ 4032,
600
+ 1344
601
+ ],
602
+ [
603
+ 4368,
604
+ 336
605
+ ],
606
+ [
607
+ 4368,
608
+ 672
609
+ ],
610
+ [
611
+ 4368,
612
+ 1008
613
+ ],
614
+ [
615
+ 4704,
616
+ 336
617
+ ],
618
+ [
619
+ 4704,
620
+ 672
621
+ ],
622
+ [
623
+ 4704,
624
+ 1008
625
+ ],
626
+ [
627
+ 5040,
628
+ 336
629
+ ],
630
+ [
631
+ 5040,
632
+ 672
633
+ ],
634
+ [
635
+ 5040,
636
+ 1008
637
+ ],
638
+ [
639
+ 5376,
640
+ 336
641
+ ],
642
+ [
643
+ 5376,
644
+ 672
645
+ ],
646
+ [
647
+ 5376,
648
+ 1008
649
+ ],
650
+ [
651
+ 5712,
652
+ 336
653
+ ],
654
+ [
655
+ 5712,
656
+ 672
657
+ ],
658
+ [
659
+ 6048,
660
+ 336
661
+ ],
662
+ [
663
+ 6048,
664
+ 672
665
+ ],
666
+ [
667
+ 6384,
668
+ 336
669
+ ],
670
+ [
671
+ 6384,
672
+ 672
673
+ ],
674
+ [
675
+ 6720,
676
+ 336
677
+ ],
678
+ [
679
+ 6720,
680
+ 672
681
+ ],
682
+ [
683
+ 7056,
684
+ 336
685
+ ],
686
+ [
687
+ 7056,
688
+ 672
689
+ ],
690
+ [
691
+ 7392,
692
+ 336
693
+ ],
694
+ [
695
+ 7392,
696
+ 672
697
+ ],
698
+ [
699
+ 7728,
700
+ 336
701
+ ],
702
+ [
703
+ 7728,
704
+ 672
705
+ ],
706
+ [
707
+ 8064,
708
+ 336
709
+ ],
710
+ [
711
+ 8064,
712
+ 672
713
+ ],
714
+ [
715
+ 8400,
716
+ 336
717
+ ],
718
+ [
719
+ 8736,
720
+ 336
721
+ ],
722
+ [
723
+ 9072,
724
+ 336
725
+ ],
726
+ [
727
+ 9408,
728
+ 336
729
+ ],
730
+ [
731
+ 9744,
732
+ 336
733
+ ],
734
+ [
735
+ 10080,
736
+ 336
737
+ ],
738
+ [
739
+ 10416,
740
+ 336
741
+ ],
742
+ [
743
+ 10752,
744
+ 336
745
+ ],
746
+ [
747
+ 11088,
748
+ 336
749
+ ],
750
+ [
751
+ 11424,
752
+ 336
753
+ ],
754
+ [
755
+ 11760,
756
+ 336
757
+ ],
758
+ [
759
+ 12096,
760
+ 336
761
+ ],
762
+ [
763
+ 12432,
764
+ 336
765
+ ],
766
+ [
767
+ 12768,
768
+ 336
769
+ ],
770
+ [
771
+ 13104,
772
+ 336
773
+ ],
774
+ [
775
+ 13440,
776
+ 336
777
+ ],
778
+ [
779
+ 13776,
780
+ 336
781
+ ],
782
+ [
783
+ 14112,
784
+ 336
785
+ ],
786
+ [
787
+ 14448,
788
+ 336
789
+ ],
790
+ [
791
+ 14784,
792
+ 336
793
+ ],
794
+ [
795
+ 15120,
796
+ 336
797
+ ],
798
+ [
799
+ 15456,
800
+ 336
801
+ ],
802
+ [
803
+ 15792,
804
+ 336
805
+ ],
806
+ [
807
+ 16128,
808
+ 336
809
+ ],
810
+ [
811
+ 16464,
812
+ 336
813
+ ]
814
+ ],
815
+ "image_split_resolution": null,
816
+ "initializer_range": 0.02,
817
+ "intermediate_size": 18944,
818
+ "max_position_embeddings": 224000,
819
+ "max_window_layers": 28,
820
+ "mm_hidden_size": 1024,
821
+ "mm_patch_merge_type": "unires",
822
+ "mm_projector_lr": null,
823
+ "mm_projector_type": "mlp2x_gelu",
824
+ "mm_resampler_type": null,
825
+ "mm_spatial_pool_mode": "average",
826
+ "mm_spatial_pool_stride": 2,
827
+ "mm_tunable_parts": "speech_projector,mm_mlp_adapter,mm_language_model",
828
+ "mm_use_im_patch_token": false,
829
+ "mm_use_im_start_end": false,
830
+ "mm_vision_select_feature": "patch",
831
+ "mm_vision_select_layer": -2,
832
+ "mm_vision_tower": "checkpoints/clip-vit-large-patch14-336",
833
+ "mm_vision_tower_lr": 2e-06,
834
+ "model_type": "qwen2",
835
+ "num_attention_heads": 28,
836
+ "num_hidden_layers": 28,
837
+ "num_key_value_heads": 4,
838
+ "pos_skipping_range": 4096,
839
+ "rms_norm_eps": 1e-06,
840
+ "rope_scaling": null,
841
+ "rope_theta": 1000000000.0,
842
+ "sliding_window": null,
843
+ "speech_encoder": "checkpoints/whisper/large-v3.pt",
844
+ "speech_encoder_ds_rate": 5,
845
+ "speech_encoder_hidden_size": 1280,
846
+ "speech_encoder_type": "whisper",
847
+ "speech_normalize": false,
848
+ "speech_projector_lr": null,
849
+ "speech_projector_type": "linear",
850
+ "tie_word_embeddings": false,
851
+ "tokenizer_model_max_length": 8192,
852
+ "tokenizer_padding_side": "right",
853
+ "torch_dtype": "bfloat16",
854
+ "transformers_version": "4.44.0",
855
+ "use_cache": false,
856
+ "use_mm_proj": true,
857
+ "use_pos_skipping": false,
858
+ "use_sliding_window": false,
859
+ "vision_tower_pretrained": null,
860
+ "vocab_size": 152064
861
+ }
generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "repetition_penalty": 1.05,
11
+ "rope_theta": 1000000000.0,
12
+ "temperature": 0.7,
13
+ "top_k": 20,
14
+ "top_p": 0.8,
15
+ "transformers_version": "4.44.0"
16
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step17500
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d37ec8d3905cf022cad6b3edda63816d0560a3e0d32bcc0ba0d4edfc3d9752c9
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2e954f9f5f1ab79b1768744bb8776e84eaf912e8dce5996e5731d5880b04c78
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2aedc4afc0c39610f64f3e0c9dcb335d3c122835cf96b6556fadf4caeec4fd4
3
+ size 4998766592
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29168711665717d107ed8c3af13f2d30d2ca6f2a5a95d0930fbe8eabf12e6169
3
+ size 2377117192
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "model_max_length": 8192,
39
+ "pad_token": "<|endoftext|>",
40
+ "padding_side": "right",
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "Qwen2Tokenizer",
43
+ "unk_token": null
44
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e198b6d23eabf998dbc3a401f88bdc219e21da7c77798b5fa2e9434ed2c0d4a
3
+ size 7352
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)