File size: 5,633 Bytes
6f136d7
 
 
 
 
 
 
 
 
64beab3
6f136d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64beab3
6f136d7
 
 
64beab3
6f136d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64beab3
6f136d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64beab3
6f136d7
 
 
64beab3
6f136d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64beab3
6f136d7
 
 
 
 
 
 
 
 
64beab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f136d7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
---
library_name: transformers
base_model: Dans-DiscountModels/mistral-7b-v0.3-ChatML
tags:
- axolotl
- generated_from_trainer
datasets:
- Dans-DiscountModels/pretokenization-test-2
model-index:
- name: 7b-m-dans-personalityengine-v1.2.1-rc-5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.8.0`
```yaml
base_model: Dans-DiscountModels/mistral-7b-v0.3-ChatML
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

trust_remote_code:

# wandb configuration
wandb_project: 7b-m-dans-personalityengine
wandb_watch:

wandb_run_id: V1.2.1-4-1 # V{Version}-{Run Number}-{Attempt Number}
wandb_log_model:

# push checkpoints to hub
hub_model_id: Dans-DiscountModels/7b-m-dans-personalityengine-v1.2.1-rc-5
# how to push checkpoints to hub
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
hub_strategy: "every_save"
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# Required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: true

# where to save the finished model to
output_dir: ./7b-m-dans-personalityengine

# where to save the dataset to
dataset_prepared_path: ./7b-m-dans-personalityengine-data

save_safetensors: true

# dataset settings (local or huggingface repo)
datasets:
  - path: Dans-DiscountModels/pretokenization-test-2
    ds_type: parquet
    type:

plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true

load_in_8bit: false
load_in_4bit: false
strict: false

val_set_size: 0.005
sequence_len: 32768

sample_packing: true
eval_sample_packing: true

pad_to_sequence_len: true

gradient_checkpointing: true
# gradient_checkpointing_kwargs:
# use_reentrant: false

gradient_accumulation_steps: 2
micro_batch_size: 2

num_epochs: 1

optimizer: ademamix_8bit
optim_args: "beta1=0.9,beta2=0.999,beta3=0.999,alpha=10"

lr_scheduler: rex
learning_rate: 0.00000015
cosine_min_lr_ratio: 0.1

# weight_decay: 0.03
max_grad_norm: 0.001

train_on_inputs: false
group_by_length: false

bf16: true
fp16: false
tf32: false

early_stopping_patience:

resume_from_checkpoint:
auto_resume_from_checkpoints: false

local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.03

evals_per_epoch: 24
eval_table_size:
eval_max_new_tokens:

saves_per_epoch: 2
save_total_limit: 1

debug: false

deepspeed: deepspeed_configs/zero3_bf16.json

fsdp:
fsdp_config:

special_tokens:

```

</details><br>

# 7b-m-dans-personalityengine-v1.2.1-rc-5

This model is a fine-tuned version of [Dans-DiscountModels/mistral-7b-v0.3-ChatML](https://huggingface.co/Dans-DiscountModels/mistral-7b-v0.3-ChatML) on the Dans-DiscountModels/pretokenization-test-2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4047

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.5e-07
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Use ademamix_8bit and the args are:
beta1=0.9,beta2=0.999,beta3=0.999,alpha=10
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 43
- num_epochs: 1.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.5957        | 0.0007 | 1    | 1.5418          |
| 1.487         | 0.0417 | 61   | 1.4982          |
| 1.5851        | 0.0833 | 122  | 1.4720          |
| 1.3702        | 0.125  | 183  | 1.4596          |
| 1.5285        | 0.1667 | 244  | 1.4519          |
| 1.4809        | 0.2083 | 305  | 1.4461          |
| 1.3806        | 0.25   | 366  | 1.4414          |
| 1.5097        | 0.2917 | 427  | 1.4373          |
| 1.497         | 0.3333 | 488  | 1.4338          |
| 1.503         | 0.375  | 549  | 1.4306          |
| 1.384         | 0.4167 | 610  | 1.4278          |
| 1.4191        | 0.4583 | 671  | 1.4252          |
| 1.3042        | 0.5    | 732  | 1.4228          |
| 1.5669        | 0.5417 | 793  | 1.4206          |
| 1.4239        | 0.5833 | 854  | 1.4185          |
| 1.4472        | 0.625  | 915  | 1.4165          |
| 1.4692        | 0.6667 | 976  | 1.4147          |
| 1.4358        | 0.7083 | 1037 | 1.4130          |
| 1.4676        | 0.75   | 1098 | 1.4114          |
| 1.4657        | 0.7917 | 1159 | 1.4099          |
| 1.424         | 0.8333 | 1220 | 1.4085          |
| 1.3385        | 0.875  | 1281 | 1.4072          |
| 1.4373        | 0.9167 | 1342 | 1.4061          |
| 1.4226        | 0.9583 | 1403 | 1.4052          |
| 1.4225        | 1.0    | 1464 | 1.4047          |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1