Safetensors
qwen2
File size: 3,061 Bytes
1c2ebb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19089d4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---

license: apache-2.0
datasets:
- liuhaotian/LLaVA-Pretrain
- lmms-lab/LLaVA-NeXT-Data
base_model:
- Qwen/Qwen2.5-7B-Instruct
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
---


[[Paper]](https://arxiv.org/abs/2407.17331) [[GitHub]](https://github.com/deepglint/unicom)  
## Model
We used [**MLCD**](https://huggingface.co/DeepGlint-AI/mlcd-vit-large-patch14-336) as the Vision Encoder in [LLaVA-Next](https://huggingface.co/lmms-lab/llava-next-qwen-32b).
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6478679d7b370854241b2ad8/8n_jBobanaLNAQjM5eZeg.png)


## Data
Our model was trained on publicly available data from the [LLaVA-Pretrain](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) and [LLaVA-NeXT-Data](https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Data) datasets.

## How to eval
```shell

pip install lmms-eval==0.2.0



CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \

python -m accelerate.commands.launch \

  --main_process_port=12581 \

  --num_processes=8 \

  -m lmms_eval \

  --model llava \

  --model_args pretrained=DeepGlint-AI/llava-mlcd-qwen2.5-7b,conv_template=qwen_1_5 \

  --tasks mmbench,mme,mmmu,ocrbench,scienceqa,scienceqa_img,seedbench,gqa,pope,textvqa_val,ai2d,chartqa,docvqa_val,infovqa_val,mmstar \

  --batch_size 1 \

  --log_samples \

  --log_samples_suffix mlcd_llava_qwen2_7b \

  --output_path ./log

```


## Performance and Limitations

In our experiments, we replaced the CLIP model in [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT) with the MLCD model to demonstrate the performance of the MLCD model in Multimodal Large Language Models (MLLMs). For the language model, we used [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B). The evaluation results show that the modified model performs exceptionally well across multiple benchmarks, validating the effectiveness of the MLCD model within MLLMs.

| Vision Tower | MLCD (ViT_L_14_336px) | CLIP (ViT_L_14_336px) |
|:----------------|:-------------|:-------------|
| LLM | Qwen2.5-7B | Qwen2.5-7B |
| AI2D | **76.98** | 73.15 |
| ScienceQA_img | **78.09** | 76.35 |

| GQA | **64.17** | 63.31 |

| InfoVQA_val | **43.48** | 38.88 |
| MMBench_cn_dev | **74.83** | 72.51 |
| MMBench_en_dev | **76.37** | 74.57 |
| MME(cognition) | **432** | 384 |
| MME(perception) | **1598** | 1512 |
| SeedBench | **68.20** | 66.80 |
| SeedBench_img | **73.75** | 72.72 |

| MMStar | **50.98** | 48.98 |

| MMMU | **44.30** | 44.20 |

| OCRBench | **531.00** | 525.00 |

| ChartQA | **67.84** | 66.52 |

| DocVQA_val | **76.46** | 75.21 |
| POPE | 88.69 | **88.83** |
| TextVQA_val | 61.69 | **62.47** |



### C. Limitations

Models with larger datasets will perform better on more tasks. We are currently training such models and will soon make them available.





## Acknowledgments



We would like to express our gratitude to [Yumeng Wang](https://huggingface.co/devymex) for his significant contributions to the experimental validation in MLLMs.