File size: 18,413 Bytes
5cd61b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# coding=utf-8
# Copyright 2024 The SparkAudio Authors and The HuggingFace Inc. team. All rights reserved.
# ... (license) ...
"""Processor class for SparkTTS."""

import torch
import re
import numpy as np
import warnings
from typing import Optional, Dict, Any, Union, List, Tuple
from pathlib import Path

from transformers.processing_utils import ProcessorMixin
from transformers.feature_extraction_utils import FeatureExtractionMixin
from transformers.tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase
from transformers import AutoTokenizer, Wav2Vec2FeatureExtractor
from transformers.utils import logging

# Import necessary items directly or ensure they are available via model reference
# Note: Avoid direct model imports here if possible, rely on the model reference.
# from .modeling_spark_tts import SparkTTSModel # Avoid direct model import if possible
from .configuration_spark_tts import SparkTTSConfig # Config is okay

# Import utils needed for prompt formatting (assuming they are merged into modeling)
# We'll access them via the model reference if needed, or duplicate simple ones like token maps.

logger = logging.get_logger(__name__)

# --- Token Maps (Duplicate here for direct use in processor) ---
TASK_TOKEN_MAP = {
    "tts": "<|task_tts|>",
    "controllable_tts": "<|task_controllable_tts|>",
    # Add other tasks if needed by processor logic
}
LEVELS_MAP = {"very_low": 0, "low": 1, "moderate": 2, "high": 3, "very_high": 4}
GENDER_MAP = {"female": 0, "male": 1}
# --- End Token Maps ---


class SparkTTSProcessor(ProcessorMixin):
    r"""
    Constructs a SparkTTS processor which wraps a text tokenizer and an audio feature extractor
    into a single processor.

    [`SparkTTSProcessor`] offers all the functionalities of [`AutoTokenizer`] and [`Wav2Vec2FeatureExtractor`].
    It processes text input for the LLM and prepares audio inputs if needed (delegating actual audio tokenization
    to the model). It also handles decoding the final output.

    Args:
        tokenizer (`PreTrainedTokenizerBase`):
            An instance of [`AutoTokenizer`]. The tokenizer is used to encode the prompt text.
        feature_extractor (`Wav2Vec2FeatureExtractor`):
            An instance of [`Wav2Vec2FeatureExtractor`]. The feature extractor is used to processor reference audio
            (though the main processing happens inside the model).
        model (`PreTrainedModel`, *optional*):
            A reference to the loaded `SparkTTSModel`. This is REQUIRED for voice cloning (prompt audio processing)
            and final audio decoding, as these steps rely on the model's internal BiCodec and Wav2Vec2 components.
            Set this using `processor.model = model` after loading both.
        config (`SparkTTSConfig`, *optional*):
             The configuration object, needed for parameters like sample_rate. Can often be inferred from the model.
    """
    attributes = ["tokenizer", "feature_extractor"]
    tokenizer_class = ("Qwen2TokenizerFast", "Qwen2Tokenizer") # Specify the underlying tokenizer type
    feature_extractor_class = ("Wav2Vec2FeatureExtractor",) # Specify the underlying feature extractor type

    def __init__(self, tokenizer=None, feature_extractor=None, model=None, config=None, **kwargs):
        if tokenizer is None:
            raise ValueError("SparkTTSProcessor requires a `tokenizer`.")
        if feature_extractor is None:
            # Attempt to load default if path is known or provide clearer error
             raise ValueError("SparkTTSProcessor requires a `feature_extractor` (Wav2Vec2FeatureExtractor).")

        super().__init__(tokenizer, feature_extractor)
        self.model = model # Store model reference (can be None initially)
        self.config = config # Store config reference

        # Get sampling rate from config if available
        self.sampling_rate = None
        if self.config and hasattr(self.config, 'sample_rate'):
            self.sampling_rate = self.config.sample_rate
        elif self.model and hasattr(self.model, 'config') and hasattr(self.model.config, 'sample_rate'):
             self.sampling_rate = self.model.config.sample_rate
        else:
             # Try feature extractor default, or raise warning
             if hasattr(self.feature_extractor, 'sampling_rate'):
                 self.sampling_rate = self.feature_extractor.sampling_rate
             else:
                 logger.warning("Could not determine sampling rate. Defaulting to 16000. Set `processor.sampling_rate` manually if needed.")
                 self.sampling_rate = 16000


    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        """
        Instantiate a [`SparkTTSProcessor`] from a pretrained processor configuration.

        Args:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                This can be either:
                - a string, the *model id* of a pretrained processor hosted inside a model repo on huggingface.co.
                - a path to a *directory* containing processor files saved using the `save_pretrained()` method,
                  e.g., `./my_model_directory/`.
            **kwargs:
                Additional keyword arguments passed along to both `AutoTokenizer.from_pretrained()` and
                `AutoFeatureExtractor.from_pretrained()`.
        """
        config = kwargs.pop("config", None)
        if config is None:
            # Try loading the specific config first
            try:
                 config = SparkTTSConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
            except Exception:
                 logger.warning(f"Could not load SparkTTSConfig from {pretrained_model_name_or_path}. Processor might lack some config values.")
                 config = None


        # Resolve component paths relative to the main path
        def _resolve_path(sub_path):
            p = Path(sub_path)
            if p.is_absolute():
                return str(p)
            # Try resolving relative to the main path if it's a directory
            main_path = Path(pretrained_model_name_or_path)
            if main_path.is_dir():
                 resolved = main_path / p
                 if resolved.exists():
                      return str(resolved)
            # Fallback to assuming sub_path is relative within a repo structure (might fail for local non-dirs)
            return sub_path

        # Determine paths from config or assume defaults
        llm_tokenizer_path = "./LLM"
        w2v_processor_path = "./wav2vec2-large-xlsr-53"
        if config:
            llm_tokenizer_path = getattr(config, 'llm_model_name_or_path', llm_tokenizer_path)
            w2v_processor_path = getattr(config, 'wav2vec2_model_name_or_path', w2v_processor_path)

        resolved_tokenizer_path = _resolve_path(llm_tokenizer_path)
        resolved_w2v_path = _resolve_path(w2v_processor_path)

        try:
            tokenizer = AutoTokenizer.from_pretrained(resolved_tokenizer_path, **kwargs)
        except Exception as e:
            raise OSError(f"Could not load tokenizer from {resolved_tokenizer_path}. Ensure path is correct and files exist. Original error: {e}")

        try:
            feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(resolved_w2v_path, **kwargs)
        except Exception as e:
            raise OSError(f"Could not load feature extractor from {resolved_w2v_path}. Ensure path is correct and files exist. Original error: {e}")

        # The 'model' attribute will be set later externally
        return cls(tokenizer=tokenizer, feature_extractor=feature_extractor, config=config)


    def __call__(self, text: str = None,
                 prompt_speech_path: Optional[str] = None,
                 prompt_text: Optional[str] = None,
                 gender: Optional[str] = None,
                 pitch: Optional[str] = None,
                 speed: Optional[str] = None,
                 return_tensors: Optional[str] = "pt",
                 **kwargs) -> BatchEncoding:
        """
        Main method to process inputs for the SparkTTS model.

        Args:
            text (`str`): The text to be synthesized.
            prompt_speech_path (`str`, *optional*): Path to prompt audio for voice cloning.
            prompt_text (`str`, *optional*): Transcript of prompt audio.
            gender (`str`, *optional*): Target gender ('male' or 'female') for voice creation.
            pitch (`str`, *optional*): Target pitch level ('very_low'...'very_high') for voice creation.
            speed (`str`, *optional*): Target speed level ('very_low'...'very_high') for voice creation.
            return_tensors (`str`, *optional*, defaults to `"pt"`):
                Framework of the returned tensors (`"pt"` for PyTorch, `"np"` for NumPy).
            **kwargs: Additional arguments (currently ignored).

        Returns:
            `BatchEncoding`: A dictionary containing the `input_ids`, `attention_mask`, and optionally
                             `global_token_ids_prompt` ready for the model's `.generate()` method.
        """
        if text is None:
            raise ValueError("`text` input must be provided.")

        global_token_ids_prompt = None
        llm_prompt_string = ""

        if prompt_speech_path is not None:
            # --- Voice Cloning Mode ---
            if self.model is None:
                 raise ValueError("Processor requires a loaded `model` reference (`processor.model = model`) for voice cloning.")
            if not hasattr(self.model, '_tokenize_audio'):
                raise AttributeError("The provided model object does not have the required '_tokenize_audio' method.")

            logger.info(f"Processing prompt audio: {prompt_speech_path}")
            # Delegate audio tokenization to the model
            try:
                # _tokenize_audio returns (global_tokens, semantic_tokens)
                global_tokens, semantic_tokens = self.model._tokenize_audio(prompt_speech_path)
                global_token_ids_prompt = global_tokens # Keep for decoding stage
            except Exception as e:
                 logger.error(f"Error tokenizing prompt audio: {e}", exc_info=True)
                 raise RuntimeError(f"Failed to process prompt audio file: {prompt_speech_path}. Check file integrity and model compatibility.") from e

            # Format prompt string using token maps
            global_tokens_str = "".join([f"<|bicodec_global_{i}|>" for i in global_tokens.squeeze().tolist()])

            if prompt_text and len(prompt_text) > 1:
                semantic_tokens_str = "".join([f"<|bicodec_semantic_{i}|>" for i in semantic_tokens.squeeze().tolist()])
                llm_prompt_parts = [
                    TASK_TOKEN_MAP["tts"], "<|start_content|>", prompt_text, text, "<|end_content|>",
                    "<|start_global_token|>", global_tokens_str, "<|end_global_token|>",
                    "<|start_semantic_token|>", semantic_tokens_str,
                ]
            else:
                llm_prompt_parts = [
                    TASK_TOKEN_MAP["tts"], "<|start_content|>", text, "<|end_content|>",
                    "<|start_global_token|>", global_tokens_str, "<|end_global_token|>",
                ]
            llm_prompt_string = "".join(llm_prompt_parts)

        elif gender is not None and pitch is not None and speed is not None:
            # --- Voice Creation Mode ---
            if gender not in GENDER_MAP: raise ValueError(f"Invalid gender '{gender}'.")
            if pitch not in LEVELS_MAP: raise ValueError(f"Invalid pitch '{pitch}'.")
            if speed not in LEVELS_MAP: raise ValueError(f"Invalid speed '{speed}'.")

            gender_id = GENDER_MAP[gender]
            pitch_level_id = LEVELS_MAP[pitch]
            speed_level_id = LEVELS_MAP[speed]

            attribute_tokens = f"<|gender_{gender_id}|><|pitch_label_{pitch_level_id}|><|speed_label_{speed_level_id}|>"

            llm_prompt_parts = [
                TASK_TOKEN_MAP["controllable_tts"], "<|start_content|>", text, "<|end_content|>",
                "<|start_style_label|>", attribute_tokens, "<|end_style_label|>",
            ]
            llm_prompt_string = "".join(llm_prompt_parts)
            # No global_token_ids_prompt needed

        else:
            raise ValueError("Processor requires either 'prompt_speech_path' (for cloning) or 'gender', 'pitch', and 'speed' (for creation).")

        # Tokenize the final LLM prompt string
        inputs = self.tokenizer(llm_prompt_string, return_tensors=return_tensors, padding=False, truncation=False)

        # Add prompt global tokens to the output if they exist (for passing to decode)
        if global_token_ids_prompt is not None:
             inputs["global_token_ids_prompt"] = global_token_ids_prompt

        return inputs

    def decode(self,
               generated_ids: Union[List[int], np.ndarray, torch.Tensor],
               global_token_ids_prompt: Optional[torch.Tensor] = None,
               input_ids_len: Optional[int] = None,
               skip_special_tokens: bool = True) -> Dict[str, Any]:
        """
        Decodes the raw token IDs generated by the model into an audio waveform.

        Args:
            generated_ids (`Union[List[int], np.ndarray, torch.Tensor]`):
                The token IDs generated by the `model.generate()` method. Assumed to be a single sequence (batch size 1).
            global_token_ids_prompt (`torch.Tensor`, *optional*):
                The global tokens obtained from the prompt audio during preprocessing (needed for voice cloning).
                Should be passed from the `__call__` output.
            input_ids_len (`int`, *optional*):
                The length of the original prompt `input_ids`. If provided, the prompt part will be stripped from
                `generated_ids` before decoding the text representation. If None, assumes `generated_ids` contains
                *only* the generated part.
            skip_special_tokens (`bool`, *optional*, defaults to `True`):
                Whether to skip special tokens when decoding the text representation for parsing.

        Returns:
            `Dict[str, Any]`: A dictionary containing:
                - `audio` (`np.ndarray`): The generated audio waveform.
                - `sampling_rate` (`int`): The sampling rate of the audio.
        """
        if self.model is None:
            raise ValueError("Processor requires a loaded `model` reference (`processor.model = model`) for decoding.")
        if not hasattr(self.model, '_detokenize_audio'):
            raise AttributeError("The provided model object does not have the required '_detokenize_audio' method.")
        if self.sampling_rate is None:
             raise ValueError("Processor could not determine sampling_rate. Set `processor.sampling_rate`.")

        # Ensure generated_ids is a tensor on the correct device
        if isinstance(generated_ids, (list, np.ndarray)):
             output_ids_tensor = torch.tensor(generated_ids)
        else:
             output_ids_tensor = generated_ids

        # Remove prompt if input_ids_len is provided
        if input_ids_len is not None:
             # Handle potential batch dimension if present (though usually not for decode)
             if output_ids_tensor.ndim > 1:
                  output_ids = output_ids_tensor[0, input_ids_len:]
             else:
                  output_ids = output_ids_tensor[input_ids_len:]
        else:
             if output_ids_tensor.ndim > 1:
                  output_ids = output_ids_tensor[0]
             else:
                  output_ids = output_ids_tensor

        if output_ids.numel() == 0:
            logger.warning("Received empty generated IDs after removing prompt. Returning empty audio.")
            return {"audio": np.array([], dtype=np.float32), "sampling_rate": self.sampling_rate}

        # Decode the text representation to parse tokens
        predicts_text = self.tokenizer.decode(output_ids, skip_special_tokens=skip_special_tokens)

        # Extract semantic tokens
        semantic_matches = re.findall(r"bicodec_semantic_(\d+)", predicts_text)
        if not semantic_matches:
             logger.warning("No semantic tokens found in the generated output text. Cannot synthesize audio.")
             return {"audio": np.array([], dtype=np.float32), "sampling_rate": self.sampling_rate}
        # Use model's device for tensors
        device = self.model.device
        pred_semantic_ids = torch.tensor([int(token) for token in semantic_matches], dtype=torch.long, device=device).unsqueeze(0) # Add batch dim

        # Determine global tokens
        if global_token_ids_prompt is not None:
            # Voice Cloning: Use prompt global tokens
            global_token_ids = global_token_ids_prompt.to(device)
             # Ensure correct shape (B, T_token, Q) or (B, D) - BiCodec detokenize needs to handle this
            if global_token_ids.ndim == 2: # If (B, D), maybe unsqueeze? Check BiCodec.detokenize expectation
                 global_token_ids = global_token_ids.unsqueeze(1) # Assume (B, 1, D) might be needed
        else:
            # Voice Creation: Parse global tokens from generated text
            global_matches = re.findall(r"bicodec_global_(\d+)", predicts_text)
            if not global_matches:
                 logger.error("Voice creation failed: No global tokens found in generated text.")
                 raise ValueError("Voice creation failed: Could not find bicodec_global tokens in the LLM output.")
            global_token_ids = torch.tensor([int(token) for token in global_matches], dtype=torch.long, device=device).unsqueeze(0) # Add batch dim
            # Add sequence dimension if needed (check BiCodec.detokenize)
            if global_token_ids.ndim == 2:
                 global_token_ids = global_token_ids.unsqueeze(1) # Assume (B, 1, D)

        # Detokenize audio using the model's method
        try:
            wav_np = self.model._detokenize_audio(global_token_ids, pred_semantic_ids)
        except Exception as e:
             logger.error(f"Error during audio detokenization: {e}", exc_info=True)
             raise RuntimeError("Failed to synthesize audio waveform from generated tokens.") from e

        return {"audio": wav_np, "sampling_rate": self.sampling_rate}