File size: 18,413 Bytes
5cd61b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# coding=utf-8
# Copyright 2024 The SparkAudio Authors and The HuggingFace Inc. team. All rights reserved.
# ... (license) ...
"""Processor class for SparkTTS."""
import torch
import re
import numpy as np
import warnings
from typing import Optional, Dict, Any, Union, List, Tuple
from pathlib import Path
from transformers.processing_utils import ProcessorMixin
from transformers.feature_extraction_utils import FeatureExtractionMixin
from transformers.tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase
from transformers import AutoTokenizer, Wav2Vec2FeatureExtractor
from transformers.utils import logging
# Import necessary items directly or ensure they are available via model reference
# Note: Avoid direct model imports here if possible, rely on the model reference.
# from .modeling_spark_tts import SparkTTSModel # Avoid direct model import if possible
from .configuration_spark_tts import SparkTTSConfig # Config is okay
# Import utils needed for prompt formatting (assuming they are merged into modeling)
# We'll access them via the model reference if needed, or duplicate simple ones like token maps.
logger = logging.get_logger(__name__)
# --- Token Maps (Duplicate here for direct use in processor) ---
TASK_TOKEN_MAP = {
"tts": "<|task_tts|>",
"controllable_tts": "<|task_controllable_tts|>",
# Add other tasks if needed by processor logic
}
LEVELS_MAP = {"very_low": 0, "low": 1, "moderate": 2, "high": 3, "very_high": 4}
GENDER_MAP = {"female": 0, "male": 1}
# --- End Token Maps ---
class SparkTTSProcessor(ProcessorMixin):
r"""
Constructs a SparkTTS processor which wraps a text tokenizer and an audio feature extractor
into a single processor.
[`SparkTTSProcessor`] offers all the functionalities of [`AutoTokenizer`] and [`Wav2Vec2FeatureExtractor`].
It processes text input for the LLM and prepares audio inputs if needed (delegating actual audio tokenization
to the model). It also handles decoding the final output.
Args:
tokenizer (`PreTrainedTokenizerBase`):
An instance of [`AutoTokenizer`]. The tokenizer is used to encode the prompt text.
feature_extractor (`Wav2Vec2FeatureExtractor`):
An instance of [`Wav2Vec2FeatureExtractor`]. The feature extractor is used to processor reference audio
(though the main processing happens inside the model).
model (`PreTrainedModel`, *optional*):
A reference to the loaded `SparkTTSModel`. This is REQUIRED for voice cloning (prompt audio processing)
and final audio decoding, as these steps rely on the model's internal BiCodec and Wav2Vec2 components.
Set this using `processor.model = model` after loading both.
config (`SparkTTSConfig`, *optional*):
The configuration object, needed for parameters like sample_rate. Can often be inferred from the model.
"""
attributes = ["tokenizer", "feature_extractor"]
tokenizer_class = ("Qwen2TokenizerFast", "Qwen2Tokenizer") # Specify the underlying tokenizer type
feature_extractor_class = ("Wav2Vec2FeatureExtractor",) # Specify the underlying feature extractor type
def __init__(self, tokenizer=None, feature_extractor=None, model=None, config=None, **kwargs):
if tokenizer is None:
raise ValueError("SparkTTSProcessor requires a `tokenizer`.")
if feature_extractor is None:
# Attempt to load default if path is known or provide clearer error
raise ValueError("SparkTTSProcessor requires a `feature_extractor` (Wav2Vec2FeatureExtractor).")
super().__init__(tokenizer, feature_extractor)
self.model = model # Store model reference (can be None initially)
self.config = config # Store config reference
# Get sampling rate from config if available
self.sampling_rate = None
if self.config and hasattr(self.config, 'sample_rate'):
self.sampling_rate = self.config.sample_rate
elif self.model and hasattr(self.model, 'config') and hasattr(self.model.config, 'sample_rate'):
self.sampling_rate = self.model.config.sample_rate
else:
# Try feature extractor default, or raise warning
if hasattr(self.feature_extractor, 'sampling_rate'):
self.sampling_rate = self.feature_extractor.sampling_rate
else:
logger.warning("Could not determine sampling rate. Defaulting to 16000. Set `processor.sampling_rate` manually if needed.")
self.sampling_rate = 16000
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
"""
Instantiate a [`SparkTTSProcessor`] from a pretrained processor configuration.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained processor hosted inside a model repo on huggingface.co.
- a path to a *directory* containing processor files saved using the `save_pretrained()` method,
e.g., `./my_model_directory/`.
**kwargs:
Additional keyword arguments passed along to both `AutoTokenizer.from_pretrained()` and
`AutoFeatureExtractor.from_pretrained()`.
"""
config = kwargs.pop("config", None)
if config is None:
# Try loading the specific config first
try:
config = SparkTTSConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
except Exception:
logger.warning(f"Could not load SparkTTSConfig from {pretrained_model_name_or_path}. Processor might lack some config values.")
config = None
# Resolve component paths relative to the main path
def _resolve_path(sub_path):
p = Path(sub_path)
if p.is_absolute():
return str(p)
# Try resolving relative to the main path if it's a directory
main_path = Path(pretrained_model_name_or_path)
if main_path.is_dir():
resolved = main_path / p
if resolved.exists():
return str(resolved)
# Fallback to assuming sub_path is relative within a repo structure (might fail for local non-dirs)
return sub_path
# Determine paths from config or assume defaults
llm_tokenizer_path = "./LLM"
w2v_processor_path = "./wav2vec2-large-xlsr-53"
if config:
llm_tokenizer_path = getattr(config, 'llm_model_name_or_path', llm_tokenizer_path)
w2v_processor_path = getattr(config, 'wav2vec2_model_name_or_path', w2v_processor_path)
resolved_tokenizer_path = _resolve_path(llm_tokenizer_path)
resolved_w2v_path = _resolve_path(w2v_processor_path)
try:
tokenizer = AutoTokenizer.from_pretrained(resolved_tokenizer_path, **kwargs)
except Exception as e:
raise OSError(f"Could not load tokenizer from {resolved_tokenizer_path}. Ensure path is correct and files exist. Original error: {e}")
try:
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(resolved_w2v_path, **kwargs)
except Exception as e:
raise OSError(f"Could not load feature extractor from {resolved_w2v_path}. Ensure path is correct and files exist. Original error: {e}")
# The 'model' attribute will be set later externally
return cls(tokenizer=tokenizer, feature_extractor=feature_extractor, config=config)
def __call__(self, text: str = None,
prompt_speech_path: Optional[str] = None,
prompt_text: Optional[str] = None,
gender: Optional[str] = None,
pitch: Optional[str] = None,
speed: Optional[str] = None,
return_tensors: Optional[str] = "pt",
**kwargs) -> BatchEncoding:
"""
Main method to process inputs for the SparkTTS model.
Args:
text (`str`): The text to be synthesized.
prompt_speech_path (`str`, *optional*): Path to prompt audio for voice cloning.
prompt_text (`str`, *optional*): Transcript of prompt audio.
gender (`str`, *optional*): Target gender ('male' or 'female') for voice creation.
pitch (`str`, *optional*): Target pitch level ('very_low'...'very_high') for voice creation.
speed (`str`, *optional*): Target speed level ('very_low'...'very_high') for voice creation.
return_tensors (`str`, *optional*, defaults to `"pt"`):
Framework of the returned tensors (`"pt"` for PyTorch, `"np"` for NumPy).
**kwargs: Additional arguments (currently ignored).
Returns:
`BatchEncoding`: A dictionary containing the `input_ids`, `attention_mask`, and optionally
`global_token_ids_prompt` ready for the model's `.generate()` method.
"""
if text is None:
raise ValueError("`text` input must be provided.")
global_token_ids_prompt = None
llm_prompt_string = ""
if prompt_speech_path is not None:
# --- Voice Cloning Mode ---
if self.model is None:
raise ValueError("Processor requires a loaded `model` reference (`processor.model = model`) for voice cloning.")
if not hasattr(self.model, '_tokenize_audio'):
raise AttributeError("The provided model object does not have the required '_tokenize_audio' method.")
logger.info(f"Processing prompt audio: {prompt_speech_path}")
# Delegate audio tokenization to the model
try:
# _tokenize_audio returns (global_tokens, semantic_tokens)
global_tokens, semantic_tokens = self.model._tokenize_audio(prompt_speech_path)
global_token_ids_prompt = global_tokens # Keep for decoding stage
except Exception as e:
logger.error(f"Error tokenizing prompt audio: {e}", exc_info=True)
raise RuntimeError(f"Failed to process prompt audio file: {prompt_speech_path}. Check file integrity and model compatibility.") from e
# Format prompt string using token maps
global_tokens_str = "".join([f"<|bicodec_global_{i}|>" for i in global_tokens.squeeze().tolist()])
if prompt_text and len(prompt_text) > 1:
semantic_tokens_str = "".join([f"<|bicodec_semantic_{i}|>" for i in semantic_tokens.squeeze().tolist()])
llm_prompt_parts = [
TASK_TOKEN_MAP["tts"], "<|start_content|>", prompt_text, text, "<|end_content|>",
"<|start_global_token|>", global_tokens_str, "<|end_global_token|>",
"<|start_semantic_token|>", semantic_tokens_str,
]
else:
llm_prompt_parts = [
TASK_TOKEN_MAP["tts"], "<|start_content|>", text, "<|end_content|>",
"<|start_global_token|>", global_tokens_str, "<|end_global_token|>",
]
llm_prompt_string = "".join(llm_prompt_parts)
elif gender is not None and pitch is not None and speed is not None:
# --- Voice Creation Mode ---
if gender not in GENDER_MAP: raise ValueError(f"Invalid gender '{gender}'.")
if pitch not in LEVELS_MAP: raise ValueError(f"Invalid pitch '{pitch}'.")
if speed not in LEVELS_MAP: raise ValueError(f"Invalid speed '{speed}'.")
gender_id = GENDER_MAP[gender]
pitch_level_id = LEVELS_MAP[pitch]
speed_level_id = LEVELS_MAP[speed]
attribute_tokens = f"<|gender_{gender_id}|><|pitch_label_{pitch_level_id}|><|speed_label_{speed_level_id}|>"
llm_prompt_parts = [
TASK_TOKEN_MAP["controllable_tts"], "<|start_content|>", text, "<|end_content|>",
"<|start_style_label|>", attribute_tokens, "<|end_style_label|>",
]
llm_prompt_string = "".join(llm_prompt_parts)
# No global_token_ids_prompt needed
else:
raise ValueError("Processor requires either 'prompt_speech_path' (for cloning) or 'gender', 'pitch', and 'speed' (for creation).")
# Tokenize the final LLM prompt string
inputs = self.tokenizer(llm_prompt_string, return_tensors=return_tensors, padding=False, truncation=False)
# Add prompt global tokens to the output if they exist (for passing to decode)
if global_token_ids_prompt is not None:
inputs["global_token_ids_prompt"] = global_token_ids_prompt
return inputs
def decode(self,
generated_ids: Union[List[int], np.ndarray, torch.Tensor],
global_token_ids_prompt: Optional[torch.Tensor] = None,
input_ids_len: Optional[int] = None,
skip_special_tokens: bool = True) -> Dict[str, Any]:
"""
Decodes the raw token IDs generated by the model into an audio waveform.
Args:
generated_ids (`Union[List[int], np.ndarray, torch.Tensor]`):
The token IDs generated by the `model.generate()` method. Assumed to be a single sequence (batch size 1).
global_token_ids_prompt (`torch.Tensor`, *optional*):
The global tokens obtained from the prompt audio during preprocessing (needed for voice cloning).
Should be passed from the `__call__` output.
input_ids_len (`int`, *optional*):
The length of the original prompt `input_ids`. If provided, the prompt part will be stripped from
`generated_ids` before decoding the text representation. If None, assumes `generated_ids` contains
*only* the generated part.
skip_special_tokens (`bool`, *optional*, defaults to `True`):
Whether to skip special tokens when decoding the text representation for parsing.
Returns:
`Dict[str, Any]`: A dictionary containing:
- `audio` (`np.ndarray`): The generated audio waveform.
- `sampling_rate` (`int`): The sampling rate of the audio.
"""
if self.model is None:
raise ValueError("Processor requires a loaded `model` reference (`processor.model = model`) for decoding.")
if not hasattr(self.model, '_detokenize_audio'):
raise AttributeError("The provided model object does not have the required '_detokenize_audio' method.")
if self.sampling_rate is None:
raise ValueError("Processor could not determine sampling_rate. Set `processor.sampling_rate`.")
# Ensure generated_ids is a tensor on the correct device
if isinstance(generated_ids, (list, np.ndarray)):
output_ids_tensor = torch.tensor(generated_ids)
else:
output_ids_tensor = generated_ids
# Remove prompt if input_ids_len is provided
if input_ids_len is not None:
# Handle potential batch dimension if present (though usually not for decode)
if output_ids_tensor.ndim > 1:
output_ids = output_ids_tensor[0, input_ids_len:]
else:
output_ids = output_ids_tensor[input_ids_len:]
else:
if output_ids_tensor.ndim > 1:
output_ids = output_ids_tensor[0]
else:
output_ids = output_ids_tensor
if output_ids.numel() == 0:
logger.warning("Received empty generated IDs after removing prompt. Returning empty audio.")
return {"audio": np.array([], dtype=np.float32), "sampling_rate": self.sampling_rate}
# Decode the text representation to parse tokens
predicts_text = self.tokenizer.decode(output_ids, skip_special_tokens=skip_special_tokens)
# Extract semantic tokens
semantic_matches = re.findall(r"bicodec_semantic_(\d+)", predicts_text)
if not semantic_matches:
logger.warning("No semantic tokens found in the generated output text. Cannot synthesize audio.")
return {"audio": np.array([], dtype=np.float32), "sampling_rate": self.sampling_rate}
# Use model's device for tensors
device = self.model.device
pred_semantic_ids = torch.tensor([int(token) for token in semantic_matches], dtype=torch.long, device=device).unsqueeze(0) # Add batch dim
# Determine global tokens
if global_token_ids_prompt is not None:
# Voice Cloning: Use prompt global tokens
global_token_ids = global_token_ids_prompt.to(device)
# Ensure correct shape (B, T_token, Q) or (B, D) - BiCodec detokenize needs to handle this
if global_token_ids.ndim == 2: # If (B, D), maybe unsqueeze? Check BiCodec.detokenize expectation
global_token_ids = global_token_ids.unsqueeze(1) # Assume (B, 1, D) might be needed
else:
# Voice Creation: Parse global tokens from generated text
global_matches = re.findall(r"bicodec_global_(\d+)", predicts_text)
if not global_matches:
logger.error("Voice creation failed: No global tokens found in generated text.")
raise ValueError("Voice creation failed: Could not find bicodec_global tokens in the LLM output.")
global_token_ids = torch.tensor([int(token) for token in global_matches], dtype=torch.long, device=device).unsqueeze(0) # Add batch dim
# Add sequence dimension if needed (check BiCodec.detokenize)
if global_token_ids.ndim == 2:
global_token_ids = global_token_ids.unsqueeze(1) # Assume (B, 1, D)
# Detokenize audio using the model's method
try:
wav_np = self.model._detokenize_audio(global_token_ids, pred_semantic_ids)
except Exception as e:
logger.error(f"Error during audio detokenization: {e}", exc_info=True)
raise RuntimeError("Failed to synthesize audio waveform from generated tokens.") from e
return {"audio": wav_np, "sampling_rate": self.sampling_rate} |