Delete processing_spark_tts.py
Browse files- processing_spark_tts.py +0 -345
processing_spark_tts.py
DELETED
@@ -1,345 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2024 The SparkAudio Authors and The HuggingFace Inc. team. All rights reserved.
|
3 |
-
# ... (license) ...
|
4 |
-
"""Processor class for SparkTTS."""
|
5 |
-
|
6 |
-
import torch
|
7 |
-
import re
|
8 |
-
import numpy as np
|
9 |
-
import warnings
|
10 |
-
from typing import Optional, Dict, Any, Union, List, Tuple
|
11 |
-
from pathlib import Path
|
12 |
-
|
13 |
-
from transformers.processing_utils import ProcessorMixin
|
14 |
-
from transformers.feature_extraction_utils import FeatureExtractionMixin
|
15 |
-
from transformers.tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase
|
16 |
-
from transformers import AutoTokenizer, Wav2Vec2FeatureExtractor
|
17 |
-
from transformers.utils import logging
|
18 |
-
|
19 |
-
# Import necessary items directly or ensure they are available via model reference
|
20 |
-
# Note: Avoid direct model imports here if possible, rely on the model reference.
|
21 |
-
# from .modeling_spark_tts import SparkTTSModel # Avoid direct model import if possible
|
22 |
-
from .configuration_spark_tts import SparkTTSConfig # Config is okay
|
23 |
-
|
24 |
-
# Import utils needed for prompt formatting (assuming they are merged into modeling)
|
25 |
-
# We'll access them via the model reference if needed, or duplicate simple ones like token maps.
|
26 |
-
|
27 |
-
logger = logging.get_logger(__name__)
|
28 |
-
|
29 |
-
# --- Token Maps (Duplicate here for direct use in processor) ---
|
30 |
-
TASK_TOKEN_MAP = {
|
31 |
-
"tts": "<|task_tts|>",
|
32 |
-
"controllable_tts": "<|task_controllable_tts|>",
|
33 |
-
# Add other tasks if needed by processor logic
|
34 |
-
}
|
35 |
-
LEVELS_MAP = {"very_low": 0, "low": 1, "moderate": 2, "high": 3, "very_high": 4}
|
36 |
-
GENDER_MAP = {"female": 0, "male": 1}
|
37 |
-
# --- End Token Maps ---
|
38 |
-
|
39 |
-
|
40 |
-
class SparkTTSProcessor(ProcessorMixin):
|
41 |
-
r"""
|
42 |
-
Constructs a SparkTTS processor which wraps a text tokenizer and an audio feature extractor
|
43 |
-
into a single processor.
|
44 |
-
|
45 |
-
[`SparkTTSProcessor`] offers all the functionalities of [`AutoTokenizer`] and [`Wav2Vec2FeatureExtractor`].
|
46 |
-
It processes text input for the LLM and prepares audio inputs if needed (delegating actual audio tokenization
|
47 |
-
to the model). It also handles decoding the final output.
|
48 |
-
|
49 |
-
Args:
|
50 |
-
tokenizer (`PreTrainedTokenizerBase`):
|
51 |
-
An instance of [`AutoTokenizer`]. The tokenizer is used to encode the prompt text.
|
52 |
-
feature_extractor (`Wav2Vec2FeatureExtractor`):
|
53 |
-
An instance of [`Wav2Vec2FeatureExtractor`]. The feature extractor is used to processor reference audio
|
54 |
-
(though the main processing happens inside the model).
|
55 |
-
model (`PreTrainedModel`, *optional*):
|
56 |
-
A reference to the loaded `SparkTTSModel`. This is REQUIRED for voice cloning (prompt audio processing)
|
57 |
-
and final audio decoding, as these steps rely on the model's internal BiCodec and Wav2Vec2 components.
|
58 |
-
Set this using `processor.model = model` after loading both.
|
59 |
-
config (`SparkTTSConfig`, *optional*):
|
60 |
-
The configuration object, needed for parameters like sample_rate. Can often be inferred from the model.
|
61 |
-
"""
|
62 |
-
attributes = ["tokenizer", "feature_extractor"]
|
63 |
-
tokenizer_class = ("Qwen2TokenizerFast", "Qwen2Tokenizer") # Specify the underlying tokenizer type
|
64 |
-
feature_extractor_class = ("Wav2Vec2FeatureExtractor",) # Specify the underlying feature extractor type
|
65 |
-
|
66 |
-
def __init__(self, tokenizer=None, feature_extractor=None, model=None, config=None, **kwargs):
|
67 |
-
if tokenizer is None:
|
68 |
-
raise ValueError("SparkTTSProcessor requires a `tokenizer`.")
|
69 |
-
if feature_extractor is None:
|
70 |
-
# Attempt to load default if path is known or provide clearer error
|
71 |
-
raise ValueError("SparkTTSProcessor requires a `feature_extractor` (Wav2Vec2FeatureExtractor).")
|
72 |
-
|
73 |
-
super().__init__(tokenizer, feature_extractor)
|
74 |
-
self.model = model # Store model reference (can be None initially)
|
75 |
-
self.config = config # Store config reference
|
76 |
-
|
77 |
-
# Get sampling rate from config if available
|
78 |
-
self.sampling_rate = None
|
79 |
-
if self.config and hasattr(self.config, 'sample_rate'):
|
80 |
-
self.sampling_rate = self.config.sample_rate
|
81 |
-
elif self.model and hasattr(self.model, 'config') and hasattr(self.model.config, 'sample_rate'):
|
82 |
-
self.sampling_rate = self.model.config.sample_rate
|
83 |
-
else:
|
84 |
-
# Try feature extractor default, or raise warning
|
85 |
-
if hasattr(self.feature_extractor, 'sampling_rate'):
|
86 |
-
self.sampling_rate = self.feature_extractor.sampling_rate
|
87 |
-
else:
|
88 |
-
logger.warning("Could not determine sampling rate. Defaulting to 16000. Set `processor.sampling_rate` manually if needed.")
|
89 |
-
self.sampling_rate = 16000
|
90 |
-
|
91 |
-
|
92 |
-
@classmethod
|
93 |
-
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
94 |
-
"""
|
95 |
-
Instantiate a [`SparkTTSProcessor`] from a pretrained processor configuration.
|
96 |
-
|
97 |
-
Args:
|
98 |
-
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
99 |
-
This can be either:
|
100 |
-
- a string, the *model id* of a pretrained processor hosted inside a model repo on huggingface.co.
|
101 |
-
- a path to a *directory* containing processor files saved using the `save_pretrained()` method,
|
102 |
-
e.g., `./my_model_directory/`.
|
103 |
-
**kwargs:
|
104 |
-
Additional keyword arguments passed along to both `AutoTokenizer.from_pretrained()` and
|
105 |
-
`AutoFeatureExtractor.from_pretrained()`.
|
106 |
-
"""
|
107 |
-
config = kwargs.pop("config", None)
|
108 |
-
if config is None:
|
109 |
-
# Try loading the specific config first
|
110 |
-
try:
|
111 |
-
config = SparkTTSConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
112 |
-
except Exception:
|
113 |
-
logger.warning(f"Could not load SparkTTSConfig from {pretrained_model_name_or_path}. Processor might lack some config values.")
|
114 |
-
config = None
|
115 |
-
|
116 |
-
|
117 |
-
# Resolve component paths relative to the main path
|
118 |
-
def _resolve_path(sub_path):
|
119 |
-
p = Path(sub_path)
|
120 |
-
if p.is_absolute():
|
121 |
-
return str(p)
|
122 |
-
# Try resolving relative to the main path if it's a directory
|
123 |
-
main_path = Path(pretrained_model_name_or_path)
|
124 |
-
if main_path.is_dir():
|
125 |
-
resolved = main_path / p
|
126 |
-
if resolved.exists():
|
127 |
-
return str(resolved)
|
128 |
-
# Fallback to assuming sub_path is relative within a repo structure (might fail for local non-dirs)
|
129 |
-
return sub_path
|
130 |
-
|
131 |
-
# Determine paths from config or assume defaults
|
132 |
-
llm_tokenizer_path = "./LLM"
|
133 |
-
w2v_processor_path = "./wav2vec2-large-xlsr-53"
|
134 |
-
if config:
|
135 |
-
llm_tokenizer_path = getattr(config, 'llm_model_name_or_path', llm_tokenizer_path)
|
136 |
-
w2v_processor_path = getattr(config, 'wav2vec2_model_name_or_path', w2v_processor_path)
|
137 |
-
|
138 |
-
resolved_tokenizer_path = _resolve_path(llm_tokenizer_path)
|
139 |
-
resolved_w2v_path = _resolve_path(w2v_processor_path)
|
140 |
-
|
141 |
-
try:
|
142 |
-
tokenizer = AutoTokenizer.from_pretrained(resolved_tokenizer_path, **kwargs)
|
143 |
-
except Exception as e:
|
144 |
-
raise OSError(f"Could not load tokenizer from {resolved_tokenizer_path}. Ensure path is correct and files exist. Original error: {e}")
|
145 |
-
|
146 |
-
try:
|
147 |
-
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(resolved_w2v_path, **kwargs)
|
148 |
-
except Exception as e:
|
149 |
-
raise OSError(f"Could not load feature extractor from {resolved_w2v_path}. Ensure path is correct and files exist. Original error: {e}")
|
150 |
-
|
151 |
-
# The 'model' attribute will be set later externally
|
152 |
-
return cls(tokenizer=tokenizer, feature_extractor=feature_extractor, config=config)
|
153 |
-
|
154 |
-
|
155 |
-
def __call__(self, text: str = None,
|
156 |
-
prompt_speech_path: Optional[str] = None,
|
157 |
-
prompt_text: Optional[str] = None,
|
158 |
-
gender: Optional[str] = None,
|
159 |
-
pitch: Optional[str] = None,
|
160 |
-
speed: Optional[str] = None,
|
161 |
-
return_tensors: Optional[str] = "pt",
|
162 |
-
**kwargs) -> BatchEncoding:
|
163 |
-
"""
|
164 |
-
Main method to process inputs for the SparkTTS model.
|
165 |
-
|
166 |
-
Args:
|
167 |
-
text (`str`): The text to be synthesized.
|
168 |
-
prompt_speech_path (`str`, *optional*): Path to prompt audio for voice cloning.
|
169 |
-
prompt_text (`str`, *optional*): Transcript of prompt audio.
|
170 |
-
gender (`str`, *optional*): Target gender ('male' or 'female') for voice creation.
|
171 |
-
pitch (`str`, *optional*): Target pitch level ('very_low'...'very_high') for voice creation.
|
172 |
-
speed (`str`, *optional*): Target speed level ('very_low'...'very_high') for voice creation.
|
173 |
-
return_tensors (`str`, *optional*, defaults to `"pt"`):
|
174 |
-
Framework of the returned tensors (`"pt"` for PyTorch, `"np"` for NumPy).
|
175 |
-
**kwargs: Additional arguments (currently ignored).
|
176 |
-
|
177 |
-
Returns:
|
178 |
-
`BatchEncoding`: A dictionary containing the `input_ids`, `attention_mask`, and optionally
|
179 |
-
`global_token_ids_prompt` ready for the model's `.generate()` method.
|
180 |
-
"""
|
181 |
-
if text is None:
|
182 |
-
raise ValueError("`text` input must be provided.")
|
183 |
-
|
184 |
-
global_token_ids_prompt = None
|
185 |
-
llm_prompt_string = ""
|
186 |
-
|
187 |
-
if prompt_speech_path is not None:
|
188 |
-
# --- Voice Cloning Mode ---
|
189 |
-
if self.model is None:
|
190 |
-
raise ValueError("Processor requires a loaded `model` reference (`processor.model = model`) for voice cloning.")
|
191 |
-
if not hasattr(self.model, '_tokenize_audio'):
|
192 |
-
raise AttributeError("The provided model object does not have the required '_tokenize_audio' method.")
|
193 |
-
|
194 |
-
logger.info(f"Processing prompt audio: {prompt_speech_path}")
|
195 |
-
# Delegate audio tokenization to the model
|
196 |
-
try:
|
197 |
-
# _tokenize_audio returns (global_tokens, semantic_tokens)
|
198 |
-
global_tokens, semantic_tokens = self.model._tokenize_audio(prompt_speech_path)
|
199 |
-
global_token_ids_prompt = global_tokens # Keep for decoding stage
|
200 |
-
except Exception as e:
|
201 |
-
logger.error(f"Error tokenizing prompt audio: {e}", exc_info=True)
|
202 |
-
raise RuntimeError(f"Failed to process prompt audio file: {prompt_speech_path}. Check file integrity and model compatibility.") from e
|
203 |
-
|
204 |
-
# Format prompt string using token maps
|
205 |
-
global_tokens_str = "".join([f"<|bicodec_global_{i}|>" for i in global_tokens.squeeze().tolist()])
|
206 |
-
|
207 |
-
if prompt_text and len(prompt_text) > 1:
|
208 |
-
semantic_tokens_str = "".join([f"<|bicodec_semantic_{i}|>" for i in semantic_tokens.squeeze().tolist()])
|
209 |
-
llm_prompt_parts = [
|
210 |
-
TASK_TOKEN_MAP["tts"], "<|start_content|>", prompt_text, text, "<|end_content|>",
|
211 |
-
"<|start_global_token|>", global_tokens_str, "<|end_global_token|>",
|
212 |
-
"<|start_semantic_token|>", semantic_tokens_str,
|
213 |
-
]
|
214 |
-
else:
|
215 |
-
llm_prompt_parts = [
|
216 |
-
TASK_TOKEN_MAP["tts"], "<|start_content|>", text, "<|end_content|>",
|
217 |
-
"<|start_global_token|>", global_tokens_str, "<|end_global_token|>",
|
218 |
-
]
|
219 |
-
llm_prompt_string = "".join(llm_prompt_parts)
|
220 |
-
|
221 |
-
elif gender is not None and pitch is not None and speed is not None:
|
222 |
-
# --- Voice Creation Mode ---
|
223 |
-
if gender not in GENDER_MAP: raise ValueError(f"Invalid gender '{gender}'.")
|
224 |
-
if pitch not in LEVELS_MAP: raise ValueError(f"Invalid pitch '{pitch}'.")
|
225 |
-
if speed not in LEVELS_MAP: raise ValueError(f"Invalid speed '{speed}'.")
|
226 |
-
|
227 |
-
gender_id = GENDER_MAP[gender]
|
228 |
-
pitch_level_id = LEVELS_MAP[pitch]
|
229 |
-
speed_level_id = LEVELS_MAP[speed]
|
230 |
-
|
231 |
-
attribute_tokens = f"<|gender_{gender_id}|><|pitch_label_{pitch_level_id}|><|speed_label_{speed_level_id}|>"
|
232 |
-
|
233 |
-
llm_prompt_parts = [
|
234 |
-
TASK_TOKEN_MAP["controllable_tts"], "<|start_content|>", text, "<|end_content|>",
|
235 |
-
"<|start_style_label|>", attribute_tokens, "<|end_style_label|>",
|
236 |
-
]
|
237 |
-
llm_prompt_string = "".join(llm_prompt_parts)
|
238 |
-
# No global_token_ids_prompt needed
|
239 |
-
|
240 |
-
else:
|
241 |
-
raise ValueError("Processor requires either 'prompt_speech_path' (for cloning) or 'gender', 'pitch', and 'speed' (for creation).")
|
242 |
-
|
243 |
-
# Tokenize the final LLM prompt string
|
244 |
-
inputs = self.tokenizer(llm_prompt_string, return_tensors=return_tensors, padding=False, truncation=False)
|
245 |
-
|
246 |
-
# Add prompt global tokens to the output if they exist (for passing to decode)
|
247 |
-
if global_token_ids_prompt is not None:
|
248 |
-
inputs["global_token_ids_prompt"] = global_token_ids_prompt
|
249 |
-
|
250 |
-
return inputs
|
251 |
-
|
252 |
-
def decode(self,
|
253 |
-
generated_ids: Union[List[int], np.ndarray, torch.Tensor],
|
254 |
-
global_token_ids_prompt: Optional[torch.Tensor] = None,
|
255 |
-
input_ids_len: Optional[int] = None,
|
256 |
-
skip_special_tokens: bool = True) -> Dict[str, Any]:
|
257 |
-
"""
|
258 |
-
Decodes the raw token IDs generated by the model into an audio waveform.
|
259 |
-
|
260 |
-
Args:
|
261 |
-
generated_ids (`Union[List[int], np.ndarray, torch.Tensor]`):
|
262 |
-
The token IDs generated by the `model.generate()` method. Assumed to be a single sequence (batch size 1).
|
263 |
-
global_token_ids_prompt (`torch.Tensor`, *optional*):
|
264 |
-
The global tokens obtained from the prompt audio during preprocessing (needed for voice cloning).
|
265 |
-
Should be passed from the `__call__` output.
|
266 |
-
input_ids_len (`int`, *optional*):
|
267 |
-
The length of the original prompt `input_ids`. If provided, the prompt part will be stripped from
|
268 |
-
`generated_ids` before decoding the text representation. If None, assumes `generated_ids` contains
|
269 |
-
*only* the generated part.
|
270 |
-
skip_special_tokens (`bool`, *optional*, defaults to `True`):
|
271 |
-
Whether to skip special tokens when decoding the text representation for parsing.
|
272 |
-
|
273 |
-
Returns:
|
274 |
-
`Dict[str, Any]`: A dictionary containing:
|
275 |
-
- `audio` (`np.ndarray`): The generated audio waveform.
|
276 |
-
- `sampling_rate` (`int`): The sampling rate of the audio.
|
277 |
-
"""
|
278 |
-
if self.model is None:
|
279 |
-
raise ValueError("Processor requires a loaded `model` reference (`processor.model = model`) for decoding.")
|
280 |
-
if not hasattr(self.model, '_detokenize_audio'):
|
281 |
-
raise AttributeError("The provided model object does not have the required '_detokenize_audio' method.")
|
282 |
-
if self.sampling_rate is None:
|
283 |
-
raise ValueError("Processor could not determine sampling_rate. Set `processor.sampling_rate`.")
|
284 |
-
|
285 |
-
# Ensure generated_ids is a tensor on the correct device
|
286 |
-
if isinstance(generated_ids, (list, np.ndarray)):
|
287 |
-
output_ids_tensor = torch.tensor(generated_ids)
|
288 |
-
else:
|
289 |
-
output_ids_tensor = generated_ids
|
290 |
-
|
291 |
-
# Remove prompt if input_ids_len is provided
|
292 |
-
if input_ids_len is not None:
|
293 |
-
# Handle potential batch dimension if present (though usually not for decode)
|
294 |
-
if output_ids_tensor.ndim > 1:
|
295 |
-
output_ids = output_ids_tensor[0, input_ids_len:]
|
296 |
-
else:
|
297 |
-
output_ids = output_ids_tensor[input_ids_len:]
|
298 |
-
else:
|
299 |
-
if output_ids_tensor.ndim > 1:
|
300 |
-
output_ids = output_ids_tensor[0]
|
301 |
-
else:
|
302 |
-
output_ids = output_ids_tensor
|
303 |
-
|
304 |
-
if output_ids.numel() == 0:
|
305 |
-
logger.warning("Received empty generated IDs after removing prompt. Returning empty audio.")
|
306 |
-
return {"audio": np.array([], dtype=np.float32), "sampling_rate": self.sampling_rate}
|
307 |
-
|
308 |
-
# Decode the text representation to parse tokens
|
309 |
-
predicts_text = self.tokenizer.decode(output_ids, skip_special_tokens=skip_special_tokens)
|
310 |
-
|
311 |
-
# Extract semantic tokens
|
312 |
-
semantic_matches = re.findall(r"bicodec_semantic_(\d+)", predicts_text)
|
313 |
-
if not semantic_matches:
|
314 |
-
logger.warning("No semantic tokens found in the generated output text. Cannot synthesize audio.")
|
315 |
-
return {"audio": np.array([], dtype=np.float32), "sampling_rate": self.sampling_rate}
|
316 |
-
# Use model's device for tensors
|
317 |
-
device = self.model.device
|
318 |
-
pred_semantic_ids = torch.tensor([int(token) for token in semantic_matches], dtype=torch.long, device=device).unsqueeze(0) # Add batch dim
|
319 |
-
|
320 |
-
# Determine global tokens
|
321 |
-
if global_token_ids_prompt is not None:
|
322 |
-
# Voice Cloning: Use prompt global tokens
|
323 |
-
global_token_ids = global_token_ids_prompt.to(device)
|
324 |
-
# Ensure correct shape (B, T_token, Q) or (B, D) - BiCodec detokenize needs to handle this
|
325 |
-
if global_token_ids.ndim == 2: # If (B, D), maybe unsqueeze? Check BiCodec.detokenize expectation
|
326 |
-
global_token_ids = global_token_ids.unsqueeze(1) # Assume (B, 1, D) might be needed
|
327 |
-
else:
|
328 |
-
# Voice Creation: Parse global tokens from generated text
|
329 |
-
global_matches = re.findall(r"bicodec_global_(\d+)", predicts_text)
|
330 |
-
if not global_matches:
|
331 |
-
logger.error("Voice creation failed: No global tokens found in generated text.")
|
332 |
-
raise ValueError("Voice creation failed: Could not find bicodec_global tokens in the LLM output.")
|
333 |
-
global_token_ids = torch.tensor([int(token) for token in global_matches], dtype=torch.long, device=device).unsqueeze(0) # Add batch dim
|
334 |
-
# Add sequence dimension if needed (check BiCodec.detokenize)
|
335 |
-
if global_token_ids.ndim == 2:
|
336 |
-
global_token_ids = global_token_ids.unsqueeze(1) # Assume (B, 1, D)
|
337 |
-
|
338 |
-
# Detokenize audio using the model's method
|
339 |
-
try:
|
340 |
-
wav_np = self.model._detokenize_audio(global_token_ids, pred_semantic_ids)
|
341 |
-
except Exception as e:
|
342 |
-
logger.error(f"Error during audio detokenization: {e}", exc_info=True)
|
343 |
-
raise RuntimeError("Failed to synthesize audio waveform from generated tokens.") from e
|
344 |
-
|
345 |
-
return {"audio": wav_np, "sampling_rate": self.sampling_rate}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|