import copy import os import os.path as osp import warnings from collections import defaultdict from io import BytesIO from typing import List, Optional, Union import PIL.Image import requests import torch from transformers import AutoConfig, AutoImageProcessor, AutoModel, AutoProcessor, AutoTokenizer from transformers.feature_extraction_utils import BatchFeature from transformers.image_utils import ImageInput, VideoInput from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack from transformers.tokenization_utils_base import PreTokenizedInput, TextInput from transformers.utils import logging from .constants import DEFAULT_IMAGE_TOKEN, MEDIA_TOKENS from .media import Image, Video, extract_media from .mm_utils import process_image, process_images from .tokenizer_utils import tokenize_conversation def to_rgb(pil_image: PIL.Image.Image) -> PIL.Image.Image: if pil_image.mode == "RGBA": white_background = PIL.Image.new("RGB", pil_image.size, (255, 255, 255)) white_background.paste(pil_image, mask=pil_image.split()[3]) # Use alpha channel as mask return white_background else: return pil_image.convert("RGB") def fetch_image(ele: dict[str, str | PIL.Image.Image], size_factor=None) -> PIL.Image.Image: if "image" in ele: image = ele["image"] else: image = ele["image_url"] image_obj = None if isinstance(image, PIL.Image.Image): image_obj = image elif image.startswith("http://") or image.startswith("https://"): response = requests.get(image, stream=True) image_obj = PIL.Image.open(BytesIO(response.content)) elif image.startswith("file://"): image_obj = PIL.Image.open(image[7:]) elif image.startswith("data:image"): if "base64," in image: _, base64_data = image.split("base64,", 1) data = base64.b64decode(base64_data) image_obj = PIL.Image.open(BytesIO(data)) else: image_obj = PIL.Image.open(image) if image_obj is None: raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}") image = to_rgb(image_obj) return image def fetch_image_url_or_fpath(url_or_fpath): if url_or_fpath.startswith("http") or url_or_fpath.startswith("https"): import tempfile import requests # Download the image to a temporary file temp_dir = tempfile.mkdtemp() temp_file = os.path.join(temp_dir, os.path.basename(url_or_fpath)) response = requests.get(url_or_fpath, stream=True) response.raise_for_status() with open(temp_file, "wb") as f: for chunk in response.iter_content(chunk_size=8192): f.write(chunk) return temp_file elif url_or_fpath.startswith("file://"): fpath = url_or_fpath.replace("file://", "") assert osp.exists(fpath), f"File {fpath} does not exist" return fpath elif osp.exists(url_or_fpath): assert osp.isfile(url_or_fpath), f"File {url_or_fpath} does not exist" return url_or_fpath else: raise ValueError(f"Unsupported image path: {url_or_fpath}") def pad_fn(input_ids_list: List[torch.Tensor], padding_value=0, target_len=None, padding_side="left") -> torch.Tensor: # tensor shape is (batch_size, seq_len) max_len = max([ids.shape[1] for ids in input_ids_list]) if target_len is not None: assert target_len >= max_len, "target_len must be greater than or equal to max_len" max_len = target_len new_input_ids_list = [] for i, input_ids in enumerate(input_ids_list): pad_tensor = torch.ones_like(input_ids) * padding_value curr_len = input_ids.shape[1] pad_tensor = pad_tensor[:, : max_len - curr_len] if padding_side == "right": input_ids = torch.cat((input_ids, pad_tensor), dim=1) else: input_ids = torch.cat((pad_tensor, input_ids), dim=1) new_input_ids_list.append(input_ids) return torch.cat(new_input_ids_list, dim=0) def extract_value_from_conv(chat): value = [] if isinstance(chat["content"], str): # vila_chat["value"].append(chat["content"]) value.append(chat["content"]) return value # otherwise, it's a list of content for content in chat["content"]: if content["type"] == "image": if "path" in content: # VILA style, can be either filepath or http url value.append(Image(fetch_image_url_or_fpath(content["path"]))) elif "image" in content: # Qwen style value.append(Image(fetch_image_url_or_fpath(content["image"]))) elif "image_pil" in content: # Qwen style assert isinstance(content["image_pil"], PIL.Image.Image), f"Type of {media_key} must be PIL.Image.Image" value.append(content["image_pil"]) else: raise ValueError(f"Type = `image` , but no `path` or `image` in | {content=}, {conversation=}") elif content["type"] == "text": value.append(content["text"]) # NOTE(ligeng): video supports are needed here else: raise ValueError(f"Unsupported content type: {content['type']}") return value class VILAProcessorKwargs(ProcessingKwargs, total=False): _defaults = { "text_kwargs": { "padding": False, }, } class VILAProcessor(ProcessorMixin): # attributes = ["image_processor", "tokenizer"] attributes = [] # valid_kwargs = ["chat_template"] valid_kwargs = [] # image_processor_class = "VILAImageProcessor" # tokenizer_class = ("VILATokenizer", "VILATokenizerFast") def __init__( self, image_processor=None, tokenizer=None, chat_template=None, config=None, padding_side="left", **kwargs ): self.image_token = MEDIA_TOKENS["image"] self.video_token = MEDIA_TOKENS["video"] self.config = config self.image_processor = image_processor self.tokenizer = tokenizer self.padding_side = padding_side # This is a special setting for Qwen. # self.pad_token_id = tokenizer.pad_token_id self.pad_token_id = self.tokenizer("<|endoftext|>").input_ids[0] # 151643 self.eos_token_id = self.tokenizer.eos_token_id super().__init__(image_processor, tokenizer, chat_template=chat_template) @staticmethod def extract_vision_info(conversations: list[dict] | list[list[dict]]) -> list[dict]: """ referernce from qwen_vl_utils """ vision_infos = [] if isinstance(conversations[0], dict): conversations = [conversations] for conversation in conversations: for message in conversation: if isinstance(message["content"], list): for ele in message["content"]: if ( "image" in ele or "image_url" in ele or "video" in ele or ele["type"] in ("image", "image_url", "video") ): vision_infos.append(ele) return vision_infos @staticmethod def process_vision_info( conversations: list[dict] | list[list[dict]], return_video_kwargs: bool = False, ) -> tuple[list[PIL.Image.Image] | None, list[torch.Tensor | list[PIL.Image.Image]] | None, Optional[dict]]: """ referernce from qwen_vl_utils NVILA does not depend on the function, but the interface is the same. """ vision_infos = extract_vision_info(conversations) ## Read images or videos image_inputs = [] video_inputs = [] video_sample_fps_list = [] for vision_info in vision_infos: if "image" in vision_info or "image_url" in vision_info: image_inputs.append(fetch_image(vision_info)) elif "video" in vision_info: video_input, video_sample_fps = fetch_video(vision_info, return_video_sample_fps=True) video_sample_fps_list.append(video_sample_fps) video_inputs.append(video_input) else: raise ValueError("image, image_url or video should in content.") if len(image_inputs) == 0: image_inputs = None if len(video_inputs) == 0: video_inputs = None if return_video_kwargs: return image_inputs, video_inputs, {"fps": video_sample_fps_list} return image_inputs, video_inputs @staticmethod def move_data_to_device(cls, prompt_inputs): def _move_data_to_device(item): # wrap function grpo trainer _prepare_input kwargs = {"device": cls.args.device} if cls.is_deepspeed_enabled and (torch.is_floating_point(item) or torch.is_complex(item)): kwargs.update({"dtype": cls.accelerator.state.deepspeed_plugin.hf_ds_config.dtype()}) return item.to(**kwargs) prompt_inputs.input_ids = _move_data_to_device(prompt_inputs.input_ids) prompt_inputs.attention_mask = _move_data_to_device(prompt_inputs.attention_mask) if "image" in prompt_inputs.media: prompt_inputs.media["image"] = [_move_data_to_device(img) for img in prompt_inputs.media["image"]] return prompt_inputs @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): padding_side = kwargs.get("padding_side", "left") if os.path.isdir(pretrained_model_name_or_path): pretrained_model_name_or_path = pretrained_model_name_or_path else: print(f"pretrained_model_name_or_path {pretrained_model_name_or_path} is not a directory, downloading") from huggingface_hub import snapshot_download pretrained_model_name_or_path = snapshot_download(pretrained_model_name_or_path) image_processor = AutoImageProcessor.from_pretrained( osp.join(pretrained_model_name_or_path, "vision_tower"), trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained( osp.join(pretrained_model_name_or_path, "llm"), trust_remote_code=True ) config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True) return cls(image_processor=image_processor, tokenizer=tokenizer, config=config, padding_side=padding_side) def __repr__(self): # NOTE(ligeng): hard coded image_processor to avoid serialization error. Dirty fix return f"VILAProcessor(image_processor=SigLip, tokenizer={self.tokenizer}, config={self.config})" def __call__( self, conversation=None, **kwargs: Unpack[VILAProcessorKwargs], ) -> BatchFeature: """ The `conv` will be look like [ { 'from': 'human', 'value': [ , 'What are the common elements in these pictures?' ] } ] and `conversation` will be a list of such `conv`s """ if kwargs.get("text", None) is not None: conversation = kwargs.get("text") assert conversation is not None, "`conversation` or `text` is required" padding_side = kwargs.get("padding_side", self.padding_side) input_ids_list = [] attention_mask = [] media = defaultdict(list) media_config = defaultdict(dict) for conv in conversation: feat = self.__single_call__(conv, **kwargs) input_ids_list.append(feat.input_ids) attention_mask.append(feat.attention_mask) for name in feat.media: media[name] += feat.media[name] for name in feat.media_config: media_config[name].update(feat.media_config[name]) # pad the input_ids to batchfy input_ids = pad_fn( input_ids_list, padding_value=self.pad_token_id, padding_side=padding_side, ) # ignore the pad token in the attention mask attention_mask = torch.ones_like(input_ids, dtype=torch.bool) attention_mask[input_ids == self.pad_token_id] = False # print("[DEBUGAAA]", self.pad_token_id, self.tokenizer.pad_token_id); exit(0) input_texts = self.tokenizer.batch_decode(input_ids) bdata = BatchFeature( data={ # "input_texts": input_texts, "input_ids": input_ids, "attention_mask": attention_mask, "media": media, "media_config": media_config, } ) # NOTE: hard coded to cuda # bdata.input_ids = bdata.input_ids.cuda() # bdata.attention_mask = bdata.attention_mask.cuda() # bdata.media["image"] = [img.cuda() for img in bdata.media["image"]] return bdata def __single_call__( self, conversation, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, videos: VideoInput = None, **kwargs: Unpack[VILAProcessorKwargs], ) -> BatchFeature: # TODO: should be merged with llava_arch.py/generate_content() # TODO (extract and preprocess should be done together, as the preprocess of image and video can be different, i.e. when dynamic res is used) conversation = copy.deepcopy(conversation) media = extract_media(conversation, self.config) # Process media media_config = defaultdict(dict) for name in media: if name == "image": if len(media["image"]) == 1 and self.config.image_aspect_ratio in ["dynamic", "dynamic_s2"]: self.config.image_processor = self.image_processor if self.config.image_aspect_ratio == "dynamic": images = process_image(media["image"][0], self.config, None, enable_dynamic_res=True).half() # print("DEBUG", len(images)); input() # NOTE: this only works for images appears at the first conversation conversation[0]["value"] = conversation[0]["value"].replace( DEFAULT_IMAGE_TOKEN, f"{DEFAULT_IMAGE_TOKEN}\n" * images.shape[0] ) else: if type(self.config.s2_scales) is str: self.config.s2_scales = list(map(int, self.config.s2_scales.split(","))) images, block_sizes = process_image( media["image"][0], self.config, None, enable_dynamic_s2=True ) images = images.half() media_config[name]["block_sizes"] = [block_sizes] else: images = process_images(media["image"], self.image_processor, self.config).half() media[name] = [image for image in images] elif name == "video": media[name] = [ process_images(images, self.image_processor, self.config).half() for images in media[name] ] else: raise ValueError(f"Unsupported media type: {name}") inputs = tokenize_conversation(conversation, self.tokenizer, add_generation_prompt=True, return_ids_only=False) input_ids = inputs.input_ids[0].unsqueeze(0).cuda() attention_mask = torch.ones_like(input_ids, dtype=torch.bool) return BatchFeature( data={ "input_ids": input_ids, "attention_mask": attention_mask, "media": media, "media_config": media_config, } ) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) def post_process_image_text_to_text(self, generated_outputs): """ Post-process the output of the model to decode the text. Args: generated_outputs (`torch.Tensor` or `np.ndarray`): The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)` or `(sequence_length,)`. Returns: `List[str]`: The decoded text. """ return self.tokenizer.batch_decode( generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False ) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) def convert_gpt_conv_to_vila_conv(self, conversation): vila_conv = [] for chat in conversation: vila_chat = {"from": "", "value": []} if chat["role"] in ("user", "system"): # user allows to input image and text vila_chat["from"] = "human" if chat["role"] == "user" else "system" vila_chat["value"] = extract_value_from_conv(chat) elif chat["role"] == "assistant": vila_chat["from"] = "gpt" vila_chat["value"] = extract_value_from_conv(chat) else: raise ValueError(f"Unsupported role: {chat['role']} in chat {chat}") vila_conv.append(vila_chat) return vila_conv def apply_chat_template(self, conversation, add_generation_prompt=True, **kwargs): return self.convert_gpt_conv_to_vila_conv(conversation) if __name__ == "__main__": # gpt style: user, assistant # vila style: human, gpt gpt_conv = [ { "role": "user", "content": [ {"type": "image", "path": "demo_images/demo_img_1.png"}, {"type": "text", "text": "Describe this image."}, ], } ] llavaconv = [ { "from": "human", "value": [ PIL.Image.open("demo_images/demo_img_1.png"), "Describe this image.", ], } ] processor = AutoProcessor.from_pretrained(output_dir, trust_remote_code=True) inputs = processor.apply_chat_template(conversation=gpt_conv, padding=True, return_tensors="pt") # model = llava.load("Efficient-Large-Model/qwen25_2B_3x3-sft").cuda() # print(model) model_path = "NVILA-Lite-2B-hf-preview" model = AutoModel.from_pretrained(model_path, trust_remote_code=True, device_map="auto") # res = model.generate_content(["how are you today?"]) # print(model.config) # print(model.tokenizer) # print(res) processor = VILAProcessor( config=model.config, image_processor=model.vision_tower.image_processor, tokenizer=model.tokenizer, ) # TODO: add padding, return_tensors, inputs = processor(conversation=llavaconv, padding=True, return_tensors="pt") print(inputs.keys(), inputs.input_ids.shape, [_.shape for _ in inputs.image]) print("vila conv pass") inputs = processor.apply_chat_template(conversation=gpt_conv, padding=True, return_tensors="pt") print(inputs.keys(), inputs.input_ids.shape, [_.shape for _ in inputs.image]) print("gpt conv pass") output_ids = model.generate( input_ids=inputs.input_ids, media={ "image": inputs.image, }, media_config={"image": {}}, generation_config=model.generation_config, max_new_tokens=100, ) print(output_ids)