Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sana, sana-sprint
|
3 |
+
tags:
|
4 |
+
- text-to-image
|
5 |
+
- SANA-Sprint
|
6 |
+
- 1024px_based_image_size
|
7 |
+
- BF16
|
8 |
+
- One-step diffusion
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
- zh
|
12 |
+
base_model:
|
13 |
+
- Efficient-Large-Model/Sana_Sprint_1.6B_1024px
|
14 |
+
pipeline_tag: text-to-image
|
15 |
+
---
|
16 |
+
<p align="center" style="border-radius: 10px">
|
17 |
+
<img src="https://nvlabs.github.io/Sana/Sprint/asset/SANA-Sprint.png" width="50%" alt="logo"/>
|
18 |
+
</p>
|
19 |
+
|
20 |
+
<div style="display:flex;justify-content: center">
|
21 |
+
<a href="https://huggingface.co/collections/Efficient-Large-Model/sana-sprint-67d6810d65235085b3b17c76"><img src="https://img.shields.io/static/v1?label=Weights&message=Huggingface&color=yellow"></a>  
|
22 |
+
<a href="https://github.com/NVlabs/Sana"><img src="https://img.shields.io/static/v1?label=Code&message=Github&color=blue&logo=github"></a>  
|
23 |
+
<a href="https://nvlabs.github.io/Sana/Sprint/"><img src="https://img.shields.io/static/v1?label=Project&message=Github&color=blue&logo=github-pages"></a>  
|
24 |
+
<!-- <a href="https://hanlab.mit.edu/projects/sana/"><img src="https://img.shields.io/static/v1?label=Page&message=MIT&color=darkred&logo=github-pages"></a>   -->
|
25 |
+
<a href="https://arxiv.org/pdf/2503.09641"><img src="https://img.shields.io/static/v1?label=Arxiv&message=SANA-Sprint&color=red&logo=arxiv"></a>  
|
26 |
+
<a href="https://nv-sana.mit.edu/sprint"><img src="https://img.shields.io/static/v1?label=Demo&message=MIT&color=yellow"></a>  
|
27 |
+
<a href="https://discord.gg/rde6eaE5Ta"><img src="https://img.shields.io/static/v1?label=Discuss&message=Discord&color=purple&logo=discord"></a>  
|
28 |
+
</div>
|
29 |
+
|
30 |
+
# 🐱 Sana Model Card
|
31 |
+
|
32 |
+
## Demos
|
33 |
+
|
34 |
+
<div align="center">
|
35 |
+
<a href="https://www.youtube.com/watch?v=nI_Ohgf8eOU" target="_blank">
|
36 |
+
<img src="https://img.youtube.com/vi/nI_Ohgf8eOU/0.jpg" alt="Demo Video of SANA-Sprint" style="width: 48%; display: block; margin: 0 auto; display: inline-block;">
|
37 |
+
</a>
|
38 |
+
<a href="https://www.youtube.com/watch?v=OOZzkirgsAc" target="_blank">
|
39 |
+
<img src="https://img.youtube.com/vi/OOZzkirgsAc/0.jpg" alt="Demo Video of SANA-Sprint" style="width: 48%; display: block; margin: 0 auto; display: inline-block;">
|
40 |
+
</a>
|
41 |
+
</div>
|
42 |
+
|
43 |
+
|
44 |
+
## Training Pipeline
|
45 |
+
|
46 |
+
<p align="center" border-raduis="10px">
|
47 |
+
<img src="https://nvlabs.github.io/Sana/Sprint/asset/content/paradigm.png" width="90%" alt="teaser_page1"/>
|
48 |
+
</p>
|
49 |
+
|
50 |
+
## Model Efficiency
|
51 |
+
|
52 |
+
<p align="center" border-raduis="10px">
|
53 |
+
<img src="https://nvlabs.github.io/Sana/Sprint/asset/content/teaser.png" width="95%" alt="teaser_page1"/>
|
54 |
+
</p>
|
55 |
+
|
56 |
+
SANA-Sprint is an ultra-efficient diffusion model for text-to-image (T2I) generation, reducing inference steps from 20 to 1-4 while achieving state-of-the-art performance.
|
57 |
+
Key innovations include:
|
58 |
+
(1) A training-free approach for continuous-time consistency distillation (sCM), eliminating costly retraining;
|
59 |
+
(2) A unified step-adaptive model for high-quality generation in 1-4 steps; and
|
60 |
+
(3) ControlNet integration for real-time interactive image generation.
|
61 |
+
SANA-Sprint achieves **7.59 FID and 0.74 GenEval in just 1 step** — outperforming FLUX-schnell (7.94 FID / 0.71 GenEval) while being 10× faster (0.1s vs 1.1s on H100).
|
62 |
+
With latencies of **0.1s (T2I) and 0.25s (ControlNet)** for 1024×1024 images on H100, and 0.31s (T2I) on an RTX 4090, SANA-Sprint is ideal for AI-powered consumer applications (AIPC).
|
63 |
+
|
64 |
+
|
65 |
+
Source code is available at https://github.com/NVlabs/Sana.
|
66 |
+
|
67 |
+
### Model Description
|
68 |
+
|
69 |
+
- **Developed by:** NVIDIA, Sana
|
70 |
+
- **Model type:** One-Step Diffusion with Continuous-Time Consistency Distillation
|
71 |
+
- **Model size:** 1.6B parameters
|
72 |
+
- **Model precision:** torch.bfloat16 (BF16)
|
73 |
+
- **Model resolution:** This model is developed to generate 1024px based images with multi-scale heigh and width.
|
74 |
+
- **License:** [NSCL v2-custom](./LICENSE.txt). Governing Terms: NVIDIA License. Additional Information: [Gemma Terms of Use | Google AI for Developers](https://ai.google.dev/gemma/terms) for Gemma-2-2B-IT, [Gemma Prohibited Use Policy | Google AI for Developers](https://ai.google.dev/gemma/prohibited_use_policy).
|
75 |
+
- **Model Description:** This is a model that can be used to generate and modify images based on text prompts.
|
76 |
+
It is a Linear Diffusion Transformer that uses one fixed, pretrained text encoders ([Gemma2-2B-IT](https://huggingface.co/google/gemma-2-2b-it))
|
77 |
+
and one 32x spatial-compressed latent feature encoder ([DC-AE](https://hanlab.mit.edu/projects/dc-ae)).
|
78 |
+
- **Resources for more information:** Check out our [GitHub Repository](https://github.com/NVlabs/Sana) and the [SANA-Sprint report on arXiv](https://arxiv.org/pdf/2503.09641).
|
79 |
+
|
80 |
+
|
81 |
+
### Model Sources
|
82 |
+
|
83 |
+
For research purposes, we recommend our `generative-models` Github repository (https://github.com/NVlabs/Sana), which is more suitable for both training and inference
|
84 |
+
[MIT Han-Lab](https://nv-sana.mit.edu/sprint) provides free SANA-Sprint inference.
|
85 |
+
- **Repository:** https://github.com/NVlabs/Sana
|
86 |
+
- **Demo:** https://nv-sana.mit.edu/sprint
|
87 |
+
- **Guidance:** https://github.com/NVlabs/Sana/asset/docs/sana_sprint.md
|
88 |
+
|
89 |
+
|
90 |
+
### 🧨 Diffusers
|
91 |
+
Under construction [PR](https://github.com/huggingface/diffusers/pull/11074)
|
92 |
+
|
93 |
+
```python
|
94 |
+
from diffusers import SanaSprintPipeline
|
95 |
+
import torch
|
96 |
+
|
97 |
+
pipeline = SanaSprintPipeline.from_pretrained(
|
98 |
+
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers",
|
99 |
+
torch_dtype=torch.bfloat16
|
100 |
+
)
|
101 |
+
pipeline.to("cuda:0")
|
102 |
+
|
103 |
+
prompt = "a tiny astronaut hatching from an egg on the moon"
|
104 |
+
|
105 |
+
image = pipeline(prompt=prompt, num_inference_steps=2).images[0]
|
106 |
+
image.save("sana_sprint.png")
|
107 |
+
```
|
108 |
+
|
109 |
+
|
110 |
+
## Uses
|
111 |
+
|
112 |
+
### Direct Use
|
113 |
+
|
114 |
+
The model is intended for research purposes only. Possible research areas and tasks include
|
115 |
+
|
116 |
+
- Generation of artworks and use in design and other artistic processes.
|
117 |
+
- Applications in educational or creative tools.
|
118 |
+
- Research on generative models.
|
119 |
+
- Safe deployment of models which have the potential to generate harmful content.
|
120 |
+
|
121 |
+
- Probing and understanding the limitations and biases of generative models.
|
122 |
+
|
123 |
+
Excluded uses are described below.
|
124 |
+
|
125 |
+
### Out-of-Scope Use
|
126 |
+
|
127 |
+
The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
|
128 |
+
|
129 |
+
## Limitations and Bias
|
130 |
+
|
131 |
+
### Limitations
|
132 |
+
|
133 |
+
|
134 |
+
- The model does not achieve perfect photorealism
|
135 |
+
- The model cannot render complex legible text
|
136 |
+
- fingers, .etc in general may not be generated properly.
|
137 |
+
- The autoencoding part of the model is lossy.
|
138 |
+
|
139 |
+
### Bias
|
140 |
+
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
|