File size: 3,076 Bytes
8f78895
 
b75327f
 
8f78895
 
 
 
 
 
f59ce65
b75327f
 
 
 
 
 
8f78895
 
 
b75327f
 
 
 
8f78895
b75327f
8f78895
b75327f
8f78895
b75327f
8f78895
b75327f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540aa23
 
 
8f78895
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
base_model: JetBrains/Mellum-4b-base
datasets:
- Etherll/CodeFIM-Rust-Mellum
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
- code
- rust
- fill-in-the-middle
- fim
- text-generation
- llm
license: apache-2.0
language:
- en
library_name: transformers
model-index:
- name: Etherll/Mellum-4b-sft-rust
  results: []
---
# Etherll/Mellum-4b-sft-rust

**Etherll/Mellum-4b-sft-rust** is a large language model (LLM) fine-tuned specifically for **Rust code Fill-in-the-Middle (FIM)** tasks. It is built upon `JetBrains/Mellum-4b-base` model.

This model has been fine-tuned on the `Etherll/CodeFIM-Rust-Mellum` dataset, which comprises approximately 57,000 Rust-specific FIM examples, to enhance its proficiency in completing Rust code snippets accurately and contextually.

A GGUF version for CPU inference is also available: [Etherll/Mellum-4b-sft-rust-GGUF](https://huggingface.co/Etherll/Mellum-4b-sft-rust-GGUF).

## Model Description

This model leverages the LLaMA-style architecture of `Mellum-4b-base` (4 billion parameters) and its extensive pre-training on over 4 trillion tokens. The fine-tuning process focused on adapting the model to the nuances of Rust syntax and common coding patterns for FIM tasks.

**Key Features:**
*   **Specialized for Rust:** Optimized for Fill-in-the-Middle tasks in Rust.
*   **Based on Mellum-4b-base:** Benefits from JetBrains' robust base model.
*   **Efficient:** Suitable for both cloud and local deployment.
*   **IDE Integration Ready:** Designed for use in developer tooling, and works particularly well with [Continue.dev](https://www.continue.dev/) for an enhanced coding assistant experience.

## Fine-tuning Data
*   **Dataset:** `Etherll/CodeFIM-Rust-Mellum`
*   **Size:** ~57,000 rows
*   **Focus:** Rust code Fill-in-the-Middle

## FIM Format

This model is trained to recognize a specific format for Fill-in-the-Middle tasks. When providing input for FIM, please use the following structure:

```
<filename>{{{filename}}}
<fim_suffix>{{{suffix_code}}}<fim_prefix>{{{prefix_code}}}<fim_middle>
```

## How to Use

## With Continue.dev

For the best integrated development experience, it's highly recommended to use this model with [Continue.dev](https://www.continue.dev/).

Refer to the [Continue.dev documentation](https://www.continue.dev/docs/setup/overview) for instructions on how to add custom LLMs.

### GGUF Version

A GGUF version is available at [Etherll/Mellum-4b-sft-rust-GGUF](https://huggingface.co/Etherll/Mellum-4b-sft-rust-GGUF).
This format is suitable for local inference on CPU (and GPU with appropriate llama.cpp/Ollama builds) using tools like:
*   [llama.cpp](https://github.com/ggerganov/llama.cpp)
*   [Ollama](https://ollama.ai/)
*   [LM Studio](https://lmstudio.ai/)
## Support & Community

If you need any help, have questions, or just want to chat, feel free to message me on Discord: **etherl**

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)