--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: bert-base-multilingual-cased-yor results: [] --- # bert-base-multilingual-cased-yor This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1281 - Accuracy: 0.7446 - F1 Binary: 0.3098 - Precision: 0.2085 - Recall: 0.6023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 44 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Binary | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:---------:|:------:| | No log | 1.0 | 225 | 0.1450 | 0.7749 | 0.3150 | 0.2217 | 0.5439 | | No log | 2.0 | 450 | 0.1398 | 0.6233 | 0.2775 | 0.1697 | 0.7602 | | 0.1288 | 3.0 | 675 | 0.1279 | 0.6461 | 0.2830 | 0.1753 | 0.7339 | | 0.1288 | 4.0 | 900 | 0.1281 | 0.7446 | 0.3098 | 0.2085 | 0.6023 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0