globals: latent_channels: 4 dataset: target: echosyn.common.datasets.ContrastivePair args: root: avae-4f4/ped_a4c folder: Latents extension: pt dataloader: target: torch.utils.data.DataLoader args: shuffle: true batch_size: 32 num_workers: 16 pin_memory: true drop_last: true persistent_workers: true backbone: target: echosyn.reindentification.model.ResNet18 args: weights: torchvision.models.ResNet18_Weights.IMAGENET1K_V1 progress: false model: target: echosyn.reindentification.model.ContrastiveModel args: in_channels: 4 out_channels: 256 kl_loss_weight: 0.0 optimizer: target: torch.optim.AdamW args: lr: 0.0001 betas: - 0.9 - 0.999 weight_decay: 0.01 eps: 1.0e-08 scheduler: target: torch.optim.lr_scheduler.ConstantLR args: factor: 1.0 vae: target: diffusers.AutoencoderKL pretrained: vae/avae-4f4 max_train_steps: 60000 gradient_accumulation_steps: 1 mixed_precision: bf16 max_grad_norm: 10.0 sample_latents: true validation_steps: 10000 validation_samples: 99999 output_dir: experiments/${wandb_args.group}/${wandb_args.name} logging_dir: logs report_to: wandb wandb_args: project: EchoFlow name: ped_a4c_4f4 group: reindentification checkpointing_steps: 10000 checkpoints_total_limit: 3 resume_from_checkpoint: null seed: 42 no_wandb: false num_train_epochs: 750