--- base_model: MBZUAI/swiftformer-xs tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall model-index: - name: swiftformer-xs results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.84 - name: Precision type: precision value: 0.8326758071649712 - name: Recall type: recall value: 0.84 --- # swiftformer-xs This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co/MBZUAI/swiftformer-xs) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4927 - Accuracy: 0.84 - Precision: 0.8327 - Recall: 0.84 - F1 Score: 0.8362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | No log | 1.0 | 4 | 0.7316 | 0.4208 | 0.8091 | 0.4208 | 0.4926 | | No log | 2.0 | 8 | 0.6456 | 0.675 | 0.8159 | 0.675 | 0.7248 | | No log | 3.0 | 12 | 0.5771 | 0.7917 | 0.8229 | 0.7917 | 0.8055 | | 0.7138 | 4.0 | 16 | 0.4992 | 0.8333 | 0.8287 | 0.8333 | 0.8310 | | 0.7138 | 5.0 | 20 | 0.4925 | 0.8292 | 0.8406 | 0.8292 | 0.8345 | | 0.7138 | 6.0 | 24 | 0.4964 | 0.825 | 0.8435 | 0.825 | 0.8333 | | 0.7138 | 7.0 | 28 | 0.4998 | 0.825 | 0.8435 | 0.825 | 0.8333 | | 0.6892 | 8.0 | 32 | 0.4999 | 0.825 | 0.8481 | 0.825 | 0.8350 | | 0.6892 | 9.0 | 36 | 0.5067 | 0.8167 | 0.8498 | 0.8167 | 0.8304 | | 0.6892 | 10.0 | 40 | 0.5162 | 0.8125 | 0.8484 | 0.8125 | 0.8273 | | 0.6892 | 11.0 | 44 | 0.5315 | 0.7792 | 0.8389 | 0.7792 | 0.8026 | | 0.6782 | 12.0 | 48 | 0.5287 | 0.7875 | 0.8411 | 0.7875 | 0.8088 | | 0.6782 | 13.0 | 52 | 0.5404 | 0.7708 | 0.8367 | 0.7708 | 0.7965 | | 0.6782 | 14.0 | 56 | 0.5656 | 0.7667 | 0.8457 | 0.7667 | 0.7957 | | 0.6742 | 15.0 | 60 | 0.5479 | 0.775 | 0.8427 | 0.775 | 0.8008 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3