delinqu commited on
Commit
478fea7
·
verified ·
1 Parent(s): 5ace675

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
action_tokenizer.py ADDED
@@ -0,0 +1,431 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ action_tokenizer.py
3
+
4
+ Extension class; wraps base LLM/VLM tokenizer with logic to discretize and tokenize continuous robot actions.
5
+ """
6
+ from typing import List, Union, Dict, Optional
7
+ import numpy as np
8
+ from transformers import PreTrainedTokenizerBase
9
+ from scipy.stats import norm
10
+ import torch
11
+
12
+ ACTION_TOKEN = '<ACTION{:05d}>'
13
+
14
+ class ActionTokenizer:
15
+ def __init__(
16
+ self,
17
+ tokenizer: PreTrainedTokenizerBase,
18
+ num_bins: int = 256,
19
+ min_action: int = -1,
20
+ max_action: int = 1,
21
+ ):
22
+ self._vocab_size = num_bins
23
+ self.tokenizer = tokenizer
24
+ self.min_action, self.max_action = min_action, max_action
25
+ self.bin_centers = np.linspace(min_action, max_action, num_bins)
26
+
27
+ # add special action tokens to language tokenizer
28
+ token_list = [ACTION_TOKEN.format(i) for i in range(self._vocab_size)]
29
+ self.token_array = np.array(token_list)
30
+
31
+ num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
32
+ print(f"Add {num_new_tokens} TRANSLATION TOKENS, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")
33
+
34
+ self.action_token_begin_idx = self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
35
+ self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
36
+
37
+ def __call__(self, action: np.ndarray) -> List[str]:
38
+ """Discretize continuous actions to tokens.
39
+ action: np.ndarray, (n, 7), continuous actions in Cartesian or Spherical coordinates.
40
+ return: np.ndarray, (n, 7), tokens.
41
+ """
42
+ action = np.clip(action, a_min=float(self.min_action), a_max=float(self.max_action))
43
+ ids = np.digitize(action, self.bin_centers, right=True) # [0, 255]
44
+ return self.token_array[ids]
45
+
46
+ def decode_token_ids_to_actions(self, action_token_id: np.ndarray) -> np.ndarray:
47
+ """decode token ids to continuous actions.
48
+ action_token_id: np.ndarray, (n, 7), token ids.
49
+ return: np.ndarray, (n, 7), continuous actions
50
+ """
51
+ ids = action_token_id - self.action_token_begin_idx
52
+ ids = np.clip(ids, a_min=0, a_max=self._vocab_size - 1)
53
+ return self.bin_centers[ids]
54
+
55
+ @property
56
+ def vocab_size(self) -> int:
57
+ return self._vocab_size
58
+
59
+ class TranslationTokenizer:
60
+ def __init__(
61
+ self,
62
+ tokenizer: PreTrainedTokenizerBase,
63
+ num_bins: Dict,
64
+ bin_policy: Optional[Dict] = None,
65
+ use_spherical: bool = True,
66
+ ):
67
+ self.tokenizer = tokenizer
68
+ self.num_theta_bins = num_bins["theta_bins"]
69
+ self.num_phi_bins = num_bins["phi_bins"]
70
+ self.num_r_bins = num_bins["r_bins"]
71
+ self.use_spherical = use_spherical
72
+
73
+ # for indexing
74
+ self.NP = self.num_phi_bins * self.num_r_bins
75
+
76
+ # add special action tokens to language tokenizer
77
+ self._vocab_size = self.num_theta_bins * self.num_phi_bins * self.num_r_bins
78
+ token_list = [ACTION_TOKEN.format(i) for i in range(self._vocab_size)]
79
+ self.token_array = np.array(token_list)
80
+
81
+ num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
82
+ print(f"Add {num_new_tokens} TRANSLATION TOKENS, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")
83
+
84
+ self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
85
+ self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
86
+ self.set_bins(bin_policy)
87
+
88
+ def set_bins(self, bin_policy):
89
+ self.theta_bins = np.array(bin_policy["theta_bins"])
90
+ self.phi_bins = np.array(bin_policy["phi_bins"])
91
+ self.r_bins = np.array(bin_policy["r_bins"])
92
+
93
+ def cartesian_to_spherical(self, x, y, z):
94
+ theta = np.arctan2(np.sqrt(x**2 + y**2), z) # polar angle
95
+ phi = np.arctan2(y, x) # azimuthal angle
96
+ r = np.sqrt(x**2 + y**2 + z**2)
97
+ return theta, phi, r
98
+
99
+ def spherical_to_cartesian(self, theta, phi, r):
100
+ x = r * np.sin(theta) * np.cos(phi)
101
+ y = r * np.sin(theta) * np.sin(phi)
102
+ z = r * np.cos(theta)
103
+ return x, y, z
104
+
105
+ def __call__(self, action: np.ndarray) -> List[str]:
106
+ """Discretize continuous actions to tokens.
107
+ action: np.ndarray, (n, 3), continuous actions in Cartesian or Spherical coordinates.
108
+ return: np.ndarray, (n,), tokens.
109
+ """
110
+ if self.use_spherical:
111
+ theta, phi, r = self.cartesian_to_spherical(action[:, 0], action[:, 1], action[:, 2])
112
+ else:
113
+ theta, phi, r = action[:, 0], action[:, 1], action[:, 2]
114
+
115
+ disc_theta = np.digitize(theta, self.theta_bins[1:-1]) # b
116
+ disc_phi = np.digitize(phi, self.phi_bins[1:-1])
117
+ disc_r = np.digitize(r, self.r_bins[1:-1])
118
+ ids = disc_theta * self.NP + disc_phi * self.num_r_bins + disc_r
119
+ return self.token_array[ids]
120
+
121
+ def decode_token_ids_to_actions(self, action_token_id: np.ndarray) -> np.ndarray:
122
+ """decode token ids to continuous actions.
123
+ action_token_id: np.ndarray, (n,), token ids.
124
+ return: np.ndarray, (n, 3), continuous actions
125
+ """
126
+ action_token_id = np.clip(action_token_id, self.token_start_idx, self.token_end_idx)
127
+ ids = action_token_id - self.token_start_idx
128
+ disc_theta, disc_phi, disc_r = ids // self.NP, (ids % self.NP) // self.num_r_bins, ids % self.num_r_bins
129
+
130
+ theta = 0.5 * (self.theta_bins[disc_theta] + self.theta_bins[disc_theta + 1])
131
+ phi = 0.5 * (self.phi_bins[disc_phi] + self.phi_bins[disc_phi + 1])
132
+ r = 0.5 * (self.r_bins[disc_r] + self.r_bins[disc_r + 1])
133
+
134
+ # clip action to [-1, 1], due to the spherical coordinate action space is the circumscribed sphere of the Cartesian action space.
135
+ x, y, z = self.spherical_to_cartesian(theta, phi, r) if self.use_spherical else (theta, phi, r)
136
+ x, y, z = np.clip([x, y, z], -1, 1)
137
+ return np.stack((x, y, z), axis=1)
138
+
139
+ @property
140
+ def vocab_size(self) -> int:
141
+ return self._vocab_size
142
+
143
+ class RotationTokenizer:
144
+ def __init__(
145
+ self,
146
+ tokenizer: PreTrainedTokenizerBase,
147
+ num_bins: Dict,
148
+ bin_policy: Optional[Dict] = None,
149
+ array_begin_idx=None,
150
+ ):
151
+ self.tokenizer = tokenizer
152
+ self.num_roll_bins = num_bins["roll_bins"] # M
153
+ self.num_pitch_bins = num_bins["pitch_bins"] # N
154
+ self.num_yaw_bins = num_bins["yaw_bins"] # P
155
+ self.array_begin_idx = array_begin_idx
156
+
157
+ # for indexing
158
+ self.NP = self.num_pitch_bins * self.num_yaw_bins
159
+
160
+ # add special action tokens to language tokenizer
161
+ self._vocab_size = self.num_roll_bins * self.num_pitch_bins * self.num_yaw_bins
162
+ token_list = [ACTION_TOKEN.format(i + self.array_begin_idx) for i in range(self._vocab_size)]
163
+ self.token_array = np.array(token_list)
164
+
165
+ num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
166
+ print(f"Add {num_new_tokens} ROTATION TOKENS to tokenizer, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")
167
+
168
+ self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
169
+ self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
170
+ self.set_bins(bin_policy)
171
+
172
+ def set_bins(self, bin_policy):
173
+ self.roll_bins = np.array(bin_policy["roll_bins"])
174
+ self.pitch_bins = np.array(bin_policy["pitch_bins"])
175
+ self.yaw_bins = np.array(bin_policy["yaw_bins"])
176
+
177
+ def __call__(self, action: np.ndarray) -> List[str]:
178
+ """Discretize continuous actions to tokens.
179
+ action: np.ndarray, (n, 3), continuous actions in Cartesian or Spherical coordinates.
180
+ return: np.ndarray, (n,), tokens.
181
+ """
182
+ roll, pitch, yaw = action[:, 0], action[:, 1], action[:, 2]
183
+ disc_roll = np.clip(np.digitize(roll, self.roll_bins) - 1, 0, self.num_roll_bins - 1)
184
+ disc_pitch = np.clip(np.digitize(pitch, self.pitch_bins) - 1, 0, self.num_pitch_bins - 1)
185
+ disc_yaw = np.clip(np.digitize(yaw, self.yaw_bins) - 1, 0, self.num_yaw_bins - 1)
186
+
187
+ ids = disc_roll * self.NP + disc_pitch * self.num_yaw_bins + disc_yaw
188
+ return self.token_array[ids]
189
+
190
+ def decode_token_ids_to_actions(self, action_token_id: Union[np.int64, np.ndarray]) -> np.ndarray:
191
+ """decode token ids to continuous actions.
192
+ action_token_id: np.ndarray, (n,), token ids.
193
+ return: np.ndarray, (n, 3), continuous actions
194
+ """
195
+ action_token_id = np.clip(action_token_id, a_min=self.token_start_idx, a_max=self.token_end_idx)
196
+ ids = action_token_id - self.token_start_idx
197
+ disc_roll, disc_pitch, disc_yaw = ids // self.NP, (ids % self.NP) // self.num_yaw_bins, ids % self.num_yaw_bins
198
+
199
+ roll = 0.5 * (self.roll_bins[disc_roll] + self.roll_bins[disc_roll + 1])
200
+ pitch = 0.5 * (self.pitch_bins[disc_pitch] + self.pitch_bins[disc_pitch + 1])
201
+ yaw = 0.5 * (self.yaw_bins[disc_yaw] + self.yaw_bins[disc_yaw + 1])
202
+ return np.stack((roll, pitch, yaw), axis=1)
203
+
204
+ @property
205
+ def vocab_size(self) -> int:
206
+ return self._vocab_size
207
+
208
+ class GripperTokenzier:
209
+ def __init__(
210
+ self,
211
+ tokenizer: PreTrainedTokenizerBase,
212
+ num_bins: int = 2,
213
+ array_begin_idx = None,
214
+ ) -> None:
215
+ self.tokenizer = tokenizer
216
+ self.num_bins = num_bins
217
+ self.array_begin_idx = array_begin_idx
218
+ token_list = [ACTION_TOKEN.format(i + self.array_begin_idx) for i in range(self.num_bins)]
219
+ self.token_array = np.array(token_list)
220
+
221
+ num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
222
+ print(f"Add {num_new_tokens} GRIPPER TOKENS to tokenizer, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")
223
+
224
+ self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
225
+ self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
226
+
227
+ def __call__(self, action: np.ndarray) -> List[str]:
228
+ """Discretize continuous actions to tokens.
229
+ action: np.ndarray, (n,), continuous actions in Cartesian or Spherical coordinates.
230
+ return: np.ndarray, (n,), tokens.
231
+ """
232
+ ids = np.where(action >= 0.5, 1, 0)
233
+ return self.token_array[ids]
234
+
235
+ def decode_token_ids_to_actions(self, action_token_id: np.ndarray) -> np.ndarray:
236
+ """decode token ids to continuous actions.
237
+ action_token_id: np.ndarray, (n,), token ids.
238
+ return: np.ndarray, (n, 1), continuous actions
239
+ """
240
+ action_token_id = np.clip(action_token_id, self.token_start_idx, self.token_end_idx)
241
+ ids = action_token_id - self.token_start_idx
242
+ actions = np.where(ids == 0, 0., 1.)
243
+ return actions[:, None]
244
+
245
+ @property
246
+ def vocab_size(self) -> int:
247
+ return self.num_bins
248
+
249
+ class SpatialActionTokenizer:
250
+ range_bins = {
251
+ "translation": {
252
+ "theta_bins": (0.0, np.pi),
253
+ "phi_bins": (-np.pi, np.pi),
254
+ "r_bins": (0.0, np.sqrt(3)),
255
+ },
256
+ "rotation": {
257
+ "roll_bins": (-1.0, 1.0),
258
+ "pitch_bins": (-1.0, 1.0),
259
+ "yaw_bins": (-1.0, 1.0),
260
+ },
261
+ }
262
+ def __init__(
263
+ self,
264
+ tokenizer: PreTrainedTokenizerBase,
265
+ num_bins: Dict,
266
+ gs_params: Dict = None,
267
+ bin_policy: Dict = None,
268
+ use_spherical: bool = True,
269
+ min_sigma: float = 0.0,
270
+ min_action: float = -1.0,
271
+ max_action: float = 1.0,
272
+ ):
273
+ """set bin_policy if exist, otherwise, caculate bin_policy from gs_params or use uniform bin grids.
274
+ gs_params: Optional[Dict],
275
+ bin_policy: Optional[Dict],
276
+ """
277
+ self.tokenizer = tokenizer
278
+ self.min_action, self.max_action = min_action, max_action
279
+ self.num_bins = num_bins
280
+ self.min_sigma = min_sigma
281
+
282
+ # set bin policy
283
+ self.bin_policy = bin_policy if bin_policy else self.get_bin_policy(gs_params, self.min_sigma)
284
+ self.translation_tokenizer = TranslationTokenizer(
285
+ self.tokenizer,
286
+ self.num_bins["translation"],
287
+ self.bin_policy["translation"],
288
+ use_spherical=use_spherical
289
+ )
290
+
291
+ self.rotation_tokenizer = RotationTokenizer(
292
+ self.tokenizer,
293
+ self.num_bins["rotation"],
294
+ self.bin_policy["rotation"],
295
+ array_begin_idx=self.translation_tokenizer.vocab_size,
296
+ )
297
+
298
+ self.gripper_tokenizer = GripperTokenzier(
299
+ self.tokenizer,
300
+ self.num_bins["gripper"],
301
+ array_begin_idx=self.translation_tokenizer.vocab_size + self.rotation_tokenizer.vocab_size
302
+ )
303
+ self._vocab_size = self.translation_tokenizer.vocab_size + self.rotation_tokenizer.vocab_size + self.gripper_tokenizer.vocab_size
304
+
305
+ def __call__(self, action: np.ndarray) -> List[str]:
306
+ """Discretize continuous actions to tokens.
307
+ action: np.ndarray, (n, 7), continuous actions in Cartesian coordinates.
308
+ return: np.ndarray, (n, 3), tokens.
309
+ """
310
+ if len(action.shape) == 1:
311
+ assert action.shape[0] == 7, f"action dim mismatch, got action shape: {action.shape}"
312
+ action = action.reshape(1, 7)
313
+ assert action.shape[1] == 7, f"action dim mismatch, got action shape: {action.shape}"
314
+
315
+ action = np.clip(action, a_min=self.min_action, a_max=self.max_action)
316
+ trans_tokens = self.translation_tokenizer(action[:, :3]) # (n,)
317
+ rot_tokens = self.rotation_tokenizer(action[:, 3:6]) # (n,)
318
+ grip_tokens = self.gripper_tokenizer(action[:, 6]) # (n,)
319
+ return np.stack((trans_tokens, rot_tokens, grip_tokens), axis=1) # (n, 3)
320
+
321
+ def decode_token_ids_to_actions(self, action_token_ids: np.ndarray) -> np.ndarray:
322
+ """decode token ids to continuous actions.
323
+ action_token_ids: np.ndarray, (n, 3), token ids.
324
+ """
325
+ if len(action_token_ids.shape) == 1:
326
+ assert action_token_ids.shape[0] == 3, f"action token id numbers mismatich, need 3 got {action_token_ids.shape[0]}"
327
+ action_token_ids = action_token_ids.reshape(1, 3)
328
+ assert action_token_ids.shape[1] == 3, f"token id numbers mismatich, need 3 got {action_token_ids.shape[1]}"
329
+
330
+ trans_action = self.translation_tokenizer.decode_token_ids_to_actions(action_token_ids[:, 0]) # (n, 3)
331
+ rot_action = self.rotation_tokenizer.decode_token_ids_to_actions(action_token_ids[:, 1]) # (n, 3)
332
+ grip_action = self.gripper_tokenizer.decode_token_ids_to_actions(action_token_ids[:, 2]) # (n, 1)
333
+ return np.concatenate((trans_action, rot_action, grip_action), axis=1) # (n, 7)
334
+
335
+ @property
336
+ def vocab_size(self) -> int:
337
+ return self._vocab_size
338
+
339
+ @property
340
+ def action_token_begin_idx(self) -> int:
341
+ return self.translation_tokenizer.token_start_idx
342
+
343
+ def get_bin_policy(self, gs_params=None, min_sigma=0.0):
344
+ bin_policy = {
345
+ "translation": {"theta_bins": None, "phi_bins": None, "r_bins": None},
346
+ "rotation": {"roll_bins": None, "pitch_bins": None, "yaw_bins": None}
347
+ }
348
+ if gs_params is None:
349
+ for bin_type in self.range_bins.keys():
350
+ for bin_key in self.range_bins[bin_type].keys():
351
+ bin_policy[bin_type][bin_key] = np.linspace(*self.range_bins[bin_type][bin_key], self.num_bins[bin_type][bin_key] + 1)
352
+ print(f"use unifrom bin grids ... \n{bin_policy}")
353
+ else:
354
+ for bin_type in self.range_bins.keys():
355
+ for bin_key in self.range_bins[bin_type].keys():
356
+ mu = gs_params[bin_key.split("_")[0].lower()]["mu"]
357
+ sigma = max(gs_params[bin_key.split("_")[0].lower()]["sigma"], min_sigma)
358
+ bin_bound_prob = np.linspace(
359
+ norm.cdf(self.range_bins[bin_type][bin_key][0], loc=mu, scale=sigma),
360
+ norm.cdf(self.range_bins[bin_type][bin_key][1], loc=mu, scale=sigma),
361
+ self.num_bins[bin_type][bin_key] + 1,
362
+ )
363
+ bin_boundary = norm.ppf(bin_bound_prob, loc=mu, scale=sigma)
364
+ bin_policy[bin_type][bin_key] = np.clip(
365
+ bin_boundary,
366
+ self.range_bins[bin_type][bin_key][0],
367
+ self.range_bins[bin_type][bin_key][1],
368
+ ).tolist() # for serialize
369
+ print(f"caculate bin grids from gaussians \n{bin_policy}")
370
+ return bin_policy
371
+
372
+ def get_norm_meshgrid(self, bin_policy):
373
+ grids = []
374
+ policy = {k1: {k2: np.array(v2) for k2, v2 in v1.items()} for k1, v1 in bin_policy.items()}
375
+ # NOTE: use unify k,v order of range_bins (tpr, rpy)
376
+ for bin_type in self.range_bins.keys():
377
+ bounds = []
378
+ for bin_key in self.range_bins[bin_type].keys():
379
+ minb, maxb = self.range_bins[bin_type][bin_key][0], self.range_bins[bin_type][bin_key][1]
380
+ bin_boundary = policy[bin_type][bin_key]
381
+ bin_center = (bin_boundary[:-1] + bin_boundary[1:]) / 2
382
+ bin_center = np.concatenate([np.array([minb]),bin_center,np.array([maxb])]) # padding
383
+ bin_center = (bin_center - minb) / (maxb - minb) # nomalize (m, n, k)
384
+ bounds.append(bin_center)
385
+ # generate grids
386
+ grid_x, grid_y, grid_z = np.meshgrid(*bounds)
387
+ grids += [np.stack([grid_x, grid_y, grid_z], -1).reshape(-1, 3)]
388
+ return grids[0], grids[1] # (N, 3)
389
+
390
+ def spatial_embedding_adaption(self, gs_params, embeddings: torch.nn.Embedding, min_sigma=0.0, adpt_feature=False):
391
+ """
392
+ gs_params0, gs_params1: Dict
393
+ embeddings: tensor (S,E)
394
+ """
395
+ from scipy.interpolate import griddata
396
+ new_policy = self.get_bin_policy(gs_params, min_sigma=min_sigma)
397
+ trans_grids0, rot_grids0 = self.get_norm_meshgrid(self.bin_policy)
398
+ trans_grids1, rot_grids1 = self.get_norm_meshgrid(new_policy)
399
+
400
+ print("overwrite bin policy and tokenizer bins ...")
401
+ self.bin_policy = new_policy
402
+ self.min_sigma = min_sigma
403
+ self.translation_tokenizer.set_bins(new_policy["translation"])
404
+ self.rotation_tokenizer.set_bins(new_policy["rotation"])
405
+
406
+ if adpt_feature:
407
+ emb_data = embeddings.weight.data # (S, e)
408
+ _, E = emb_data.shape
409
+
410
+ # translation
411
+ m, n, k = (self.num_bins["translation"][k] for k in ["theta_bins", "phi_bins", "r_bins"])
412
+ N = m*n*k
413
+ trans_emb_data = emb_data[:N,].reshape(m, n, k, -1).permute(3, 0, 1, 2) # (e, m, n, k)
414
+ pad_emb = torch.nn.functional.pad(trans_emb_data, (1, 1, 1, 1, 1, 1), "replicate").permute(1, 2, 3, 0).reshape(-1, E)
415
+ adpt_trans_emb = griddata(trans_grids0, pad_emb.float(), trans_grids1, method='linear')
416
+ adpt_trans_emb = adpt_trans_emb.reshape(m+2, n+2, k+2, E)[1:-1, 1:-1, 1:-1,]
417
+
418
+ # rotation
419
+ m1, n1, k1 = (self.num_bins["rotation"][k] for k in ["roll_bins", "pitch_bins", "yaw_bins"])
420
+ M = m1*n1*k1
421
+ rot_emb_data = emb_data[N : N + M,].reshape(m1, n1, k1, -1).permute(3, 0, 1, 2) # (e, m, n, k)
422
+ pad_emb = torch.nn.functional.pad(rot_emb_data, (1, 1, 1, 1, 1, 1), "replicate").permute(1, 2, 3, 0).reshape(-1, E)
423
+ adpt_rot_emb = griddata(rot_grids0, pad_emb.float(), rot_grids1, method='linear')
424
+ adpt_rot_emb = adpt_rot_emb.reshape(m1+2, n1+2, k1+2, E)[1:-1, 1:-1, 1:-1,]
425
+
426
+ # set data
427
+ device, dtype = embeddings.weight.data.device, embeddings.weight.data.dtype
428
+ embeddings.weight.data[:N] = torch.Tensor(adpt_trans_emb.reshape(-1, E), device=device).to(dtype)
429
+ embeddings.weight.data[N:N+M] = torch.Tensor(adpt_rot_emb.reshape(-1, E), device=device).to(dtype)
430
+ print("DONE! adapt spatial embedding to new gaussian distributation finished.")
431
+ print(embeddings.weight.data)
config.json ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_vocab_size": 265347,
3
+ "action_token_begin_idx": 257153,
4
+ "architectures": [
5
+ "SpatialVLAForConditionalGeneration"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_spatialvla.SpatialVLAConfig",
9
+ "AutoModel": "modeling_spatialvla.SpatialVLAForConditionalGeneration"
10
+ },
11
+ "bos_token_id": 2,
12
+ "ego3d_patch_reso": 2,
13
+ "eos_token_id": 1,
14
+ "hidden_size": 2048,
15
+ "image_token_index": 257152,
16
+ "model_type": "spatialvla",
17
+ "n_freqs": 8,
18
+ "num_hidden_layers": 26,
19
+ "pad_token_id": 0,
20
+ "projection_dim": 2304,
21
+ "spatial_token_num": 8194,
22
+ "text_config": {
23
+ "architectures": [
24
+ "Gemma2ForCausalLM"
25
+ ],
26
+ "eos_token_id": [
27
+ 1,
28
+ 107
29
+ ],
30
+ "hidden_act": "gelu_pytorch_tanh",
31
+ "hidden_size": 2304,
32
+ "intermediate_size": 9216,
33
+ "model_type": "gemma2",
34
+ "num_hidden_layers": 26,
35
+ "num_image_tokens": 256,
36
+ "num_key_value_heads": 4,
37
+ "tie_word_embeddings": false,
38
+ "torch_dtype": "bfloat16",
39
+ "vocab_size": 265347
40
+ },
41
+ "torch_dtype": "bfloat16",
42
+ "transformers_version": "4.47.0",
43
+ "use_spatial_token": true,
44
+ "use_vision_zoe": true,
45
+ "vision_config": {
46
+ "hidden_size": 1152,
47
+ "intermediate_size": 4304,
48
+ "model_type": "siglip_vision_model",
49
+ "num_attention_heads": 16,
50
+ "num_hidden_layers": 27,
51
+ "num_image_tokens": 256,
52
+ "num_positions": 256,
53
+ "patch_size": 14,
54
+ "projection_dim": 2304,
55
+ "torch_dtype": "bfloat16",
56
+ "vision_use_head": false
57
+ },
58
+ "vision_zoe_config": {
59
+ "_attn_implementation_autoset": false,
60
+ "_name_or_path": "Intel/zoedepth-nyu-kitti",
61
+ "add_cross_attention": false,
62
+ "add_projection": false,
63
+ "architectures": [
64
+ "ZoeDepthForDepthEstimation"
65
+ ],
66
+ "attractor_alpha": 1000,
67
+ "attractor_gamma": 2,
68
+ "attractor_kind": "mean",
69
+ "backbone": null,
70
+ "backbone_config": {
71
+ "_attn_implementation_autoset": false,
72
+ "_name_or_path": "",
73
+ "add_cross_attention": false,
74
+ "add_fpn": false,
75
+ "architectures": null,
76
+ "attention_probs_dropout_prob": 0.0,
77
+ "auxiliary_channels": 256,
78
+ "auxiliary_concat_input": false,
79
+ "auxiliary_loss_weight": 0.4,
80
+ "auxiliary_num_convs": 1,
81
+ "bad_words_ids": null,
82
+ "begin_suppress_tokens": null,
83
+ "bos_token_id": null,
84
+ "chunk_size_feed_forward": 0,
85
+ "cross_attention_hidden_size": null,
86
+ "decoder_start_token_id": null,
87
+ "diversity_penalty": 0.0,
88
+ "do_sample": false,
89
+ "drop_path_rate": 0.1,
90
+ "early_stopping": false,
91
+ "encoder_no_repeat_ngram_size": 0,
92
+ "eos_token_id": null,
93
+ "exponential_decay_length_penalty": null,
94
+ "finetuning_task": null,
95
+ "forced_bos_token_id": null,
96
+ "forced_eos_token_id": null,
97
+ "hidden_act": "gelu",
98
+ "hidden_dropout_prob": 0.0,
99
+ "hidden_size": 1024,
100
+ "id2label": {
101
+ "0": "LABEL_0",
102
+ "1": "LABEL_1"
103
+ },
104
+ "image_size": 384,
105
+ "initializer_range": 0.02,
106
+ "intermediate_size": 4096,
107
+ "is_decoder": false,
108
+ "is_encoder_decoder": false,
109
+ "label2id": {
110
+ "LABEL_0": 0,
111
+ "LABEL_1": 1
112
+ },
113
+ "layer_norm_eps": 1e-12,
114
+ "layer_scale_init_value": 0.1,
115
+ "length_penalty": 1.0,
116
+ "max_length": 20,
117
+ "min_length": 0,
118
+ "model_type": "beit",
119
+ "no_repeat_ngram_size": 0,
120
+ "num_attention_heads": 16,
121
+ "num_beam_groups": 1,
122
+ "num_beams": 1,
123
+ "num_channels": 3,
124
+ "num_hidden_layers": 24,
125
+ "num_return_sequences": 1,
126
+ "out_features": [
127
+ "stage6",
128
+ "stage12",
129
+ "stage18",
130
+ "stage24"
131
+ ],
132
+ "out_indices": [
133
+ 6,
134
+ 12,
135
+ 18,
136
+ 24
137
+ ],
138
+ "output_attentions": false,
139
+ "output_hidden_states": false,
140
+ "output_scores": false,
141
+ "pad_token_id": null,
142
+ "patch_size": 16,
143
+ "pool_scales": [
144
+ 1,
145
+ 2,
146
+ 3,
147
+ 6
148
+ ],
149
+ "prefix": null,
150
+ "problem_type": null,
151
+ "pruned_heads": {},
152
+ "remove_invalid_values": false,
153
+ "repetition_penalty": 1.0,
154
+ "reshape_hidden_states": false,
155
+ "return_dict": true,
156
+ "return_dict_in_generate": false,
157
+ "semantic_loss_ignore_index": 255,
158
+ "sep_token_id": null,
159
+ "stage_names": [
160
+ "stem",
161
+ "stage1",
162
+ "stage2",
163
+ "stage3",
164
+ "stage4",
165
+ "stage5",
166
+ "stage6",
167
+ "stage7",
168
+ "stage8",
169
+ "stage9",
170
+ "stage10",
171
+ "stage11",
172
+ "stage12",
173
+ "stage13",
174
+ "stage14",
175
+ "stage15",
176
+ "stage16",
177
+ "stage17",
178
+ "stage18",
179
+ "stage19",
180
+ "stage20",
181
+ "stage21",
182
+ "stage22",
183
+ "stage23",
184
+ "stage24"
185
+ ],
186
+ "suppress_tokens": null,
187
+ "task_specific_params": null,
188
+ "temperature": 1.0,
189
+ "tf_legacy_loss": false,
190
+ "tie_encoder_decoder": false,
191
+ "tie_word_embeddings": true,
192
+ "tokenizer_class": null,
193
+ "top_k": 50,
194
+ "top_p": 1.0,
195
+ "torch_dtype": null,
196
+ "torchscript": false,
197
+ "typical_p": 1.0,
198
+ "use_absolute_position_embeddings": false,
199
+ "use_auxiliary_head": true,
200
+ "use_bfloat16": false,
201
+ "use_mask_token": false,
202
+ "use_mean_pooling": true,
203
+ "use_relative_position_bias": true,
204
+ "use_shared_relative_position_bias": false,
205
+ "vocab_size": 8192
206
+ },
207
+ "backbone_hidden_size": 1024,
208
+ "bad_words_ids": null,
209
+ "batch_norm_eps": 1e-05,
210
+ "begin_suppress_tokens": null,
211
+ "bin_centers_type": "softplus",
212
+ "bin_configurations": [
213
+ {
214
+ "max_depth": 10.0,
215
+ "min_depth": 0.001,
216
+ "n_bins": 64,
217
+ "name": "nyu"
218
+ },
219
+ {
220
+ "max_depth": 80.0,
221
+ "min_depth": 0.001,
222
+ "n_bins": 64,
223
+ "name": "kitti"
224
+ }
225
+ ],
226
+ "bin_embedding_dim": 128,
227
+ "bos_token_id": null,
228
+ "bottleneck_features": 256,
229
+ "chunk_size_feed_forward": 0,
230
+ "cross_attention_hidden_size": null,
231
+ "decoder_start_token_id": null,
232
+ "diversity_penalty": 0.0,
233
+ "do_sample": false,
234
+ "early_stopping": false,
235
+ "encoder_no_repeat_ngram_size": 0,
236
+ "eos_token_id": null,
237
+ "exponential_decay_length_penalty": null,
238
+ "finetuning_task": null,
239
+ "forced_bos_token_id": null,
240
+ "forced_eos_token_id": null,
241
+ "fusion_hidden_size": 256,
242
+ "head_in_index": -1,
243
+ "hidden_act": "gelu",
244
+ "id2label": {
245
+ "0": "LABEL_0",
246
+ "1": "LABEL_1"
247
+ },
248
+ "initializer_range": 0.02,
249
+ "is_decoder": false,
250
+ "is_encoder_decoder": false,
251
+ "label2id": {
252
+ "LABEL_0": 0,
253
+ "LABEL_1": 1
254
+ },
255
+ "length_penalty": 1.0,
256
+ "max_length": 20,
257
+ "max_temp": 50.0,
258
+ "min_length": 0,
259
+ "min_temp": 0.0212,
260
+ "model_type": "zoedepth",
261
+ "neck_hidden_sizes": [
262
+ 256,
263
+ 512,
264
+ 1024,
265
+ 1024
266
+ ],
267
+ "no_repeat_ngram_size": 0,
268
+ "num_attractors": [
269
+ 16,
270
+ 8,
271
+ 4,
272
+ 1
273
+ ],
274
+ "num_beam_groups": 1,
275
+ "num_beams": 1,
276
+ "num_patch_transformer_layers": 4,
277
+ "num_relative_features": 32,
278
+ "num_return_sequences": 1,
279
+ "output_attentions": false,
280
+ "output_hidden_states": false,
281
+ "output_scores": false,
282
+ "pad_token_id": null,
283
+ "patch_transformer_hidden_size": 128,
284
+ "patch_transformer_intermediate_size": 1024,
285
+ "patch_transformer_num_attention_heads": 4,
286
+ "prefix": null,
287
+ "problem_type": null,
288
+ "pruned_heads": {},
289
+ "readout_type": "project",
290
+ "reassemble_factors": [
291
+ 4,
292
+ 2,
293
+ 1,
294
+ 0.5
295
+ ],
296
+ "remove_invalid_values": false,
297
+ "repetition_penalty": 1.0,
298
+ "return_dict": true,
299
+ "return_dict_in_generate": false,
300
+ "sep_token_id": null,
301
+ "suppress_tokens": null,
302
+ "task_specific_params": null,
303
+ "temperature": 1.0,
304
+ "tf_legacy_loss": false,
305
+ "tie_encoder_decoder": false,
306
+ "tie_word_embeddings": true,
307
+ "tokenizer_class": null,
308
+ "top_k": 50,
309
+ "top_p": 1.0,
310
+ "torch_dtype": "bfloat16",
311
+ "torchscript": false,
312
+ "typical_p": 1.0,
313
+ "use_batch_norm_in_fusion_residual": false,
314
+ "use_bfloat16": false,
315
+ "use_bias_in_fusion_residual": null,
316
+ "use_pretrained_backbone": false
317
+ }
318
+ }
configuration_spatialvla.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved.
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """PaliGemmamodel configuration"""
15
+
16
+ import warnings
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+ from transformers import CONFIG_MAPPING, AutoConfig
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ class SpatialVLAConfig(PretrainedConfig):
25
+ model_type = "spatialvla"
26
+ sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig, "vision_zoe_config": AutoConfig}
27
+
28
+ def __init__(
29
+ self,
30
+ vision_config=None,
31
+ text_config=None,
32
+ ignore_index=-100,
33
+ image_token_index=256000,
34
+ vocab_size=257152,
35
+ projection_dim=2048,
36
+ hidden_size=2048,
37
+ vision_zoe_config=None,
38
+ action_token_begin_idx=None,
39
+ spatial_token_num=259,
40
+ use_spatial_token=False,
41
+ ego3d_patch_reso=4,
42
+ n_freqs=8,
43
+ use_vision_zoe=True,
44
+ **kwargs,
45
+ ):
46
+ self._ignore_index = ignore_index
47
+ self.image_token_index = image_token_index
48
+ self._vocab_size = vocab_size
49
+ self.projection_dim = projection_dim
50
+ self.hidden_size = hidden_size
51
+ self.vision_config = vision_config
52
+ self.is_encoder_decoder = False
53
+
54
+ if isinstance(self.vision_config, dict):
55
+ vision_config["model_type"] = (
56
+ vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model"
57
+ )
58
+ self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
59
+ elif vision_config is None:
60
+ self.vision_config = CONFIG_MAPPING["siglip_vision_model"](
61
+ intermediate_size=4096,
62
+ hidden_size=1152,
63
+ patch_size=14,
64
+ image_size=224,
65
+ num_hidden_layers=27,
66
+ num_attention_heads=16,
67
+ vocab_size=257152,
68
+ vision_use_head=False,
69
+ )
70
+
71
+ self.text_config = text_config
72
+ if isinstance(self.text_config, dict):
73
+ text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "gemma2"
74
+ self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
75
+ elif text_config is None:
76
+ self.text_config = CONFIG_MAPPING["gemma2"](
77
+ hidden_size=2048,
78
+ num_hidden_layers=18,
79
+ intermediate_size=16384,
80
+ num_attention_heads=8,
81
+ num_key_value_heads=1,
82
+ is_encoder_decoder=False,
83
+ vocab_size=vocab_size,
84
+ )
85
+ self.text_config.num_image_tokens = (self.vision_config.image_size // self.vision_config.patch_size) ** 2
86
+ self.vision_config.projection_dim = projection_dim
87
+
88
+ # vision zoe config
89
+ self.vision_zoe_config = vision_zoe_config
90
+ if isinstance(self.vision_zoe_config, dict):
91
+ vision_zoe_config["model_type"] = vision_zoe_config["model_type"] if "model_type" in vision_zoe_config else "zoedepth"
92
+ self.vision_zoe_config = CONFIG_MAPPING[vision_zoe_config["model_type"]](**vision_zoe_config)
93
+ else:
94
+ pass
95
+
96
+ # additional attributes
97
+ self.action_token_begin_idx = action_token_begin_idx
98
+ self.spatial_token_num = spatial_token_num
99
+ self.use_spatial_token = use_spatial_token
100
+ self.ego3d_patch_reso = ego3d_patch_reso
101
+ self.n_freqs = n_freqs
102
+ self.use_vision_zoe = use_vision_zoe
103
+
104
+ super().__init__(**kwargs)
105
+
106
+ @property
107
+ def ignore_index(self):
108
+ warnings.warn(
109
+ "The `ignore_index` attribute is deprecated and will be removed in v4.47.",
110
+ FutureWarning,
111
+ )
112
+ return self._ignore_index
113
+
114
+ @ignore_index.setter
115
+ def ignore_index(self, value):
116
+ self._ignore_index = value
117
+
118
+ def to_dict(self):
119
+ output = super().to_dict()
120
+ output.pop("_ignore_index", None)
121
+ return output
example.png ADDED
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "cache_implementation": "hybrid",
5
+ "eos_token_id": 1,
6
+ "pad_token_id": 0,
7
+ "transformers_version": "4.47.0"
8
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:014d7ca643d9ecb48a3689e7d2b3875b2ea1ae71fc422f8179ae50c786a608eb
3
+ size 4969426016
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22501b6216c652d94bb4917d85bc13d891b6aeb66ff785300436c1e8f8e5ed07
3
+ size 3086476734
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_gemma2.py ADDED
@@ -0,0 +1,1283 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # custom gemma2 to support flash_attention_2,
2
+ # source from https://github.com/huggingface/transformers/blob/v4.47.0/src/transformers/models/gemma2/modeling_gemma2.py
3
+ # coding=utf-8
4
+ # Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
5
+ #
6
+ #
7
+ # Licensed under the Apache License, Version 2.0 (the "License");
8
+ # you may not use this file except in compliance with the License.
9
+ # You may obtain a copy of the License at
10
+ #
11
+ # http://www.apache.org/licenses/LICENSE-2.0
12
+ #
13
+ # Unless required by applicable law or agreed to in writing, software
14
+ # distributed under the License is distributed on an "AS IS" BASIS,
15
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
+ # See the License for the specific language governing permissions and
17
+ # limitations under the License.
18
+ from typing import List, Optional, Tuple, Union
19
+
20
+ import torch
21
+ import torch.nn as nn
22
+
23
+ from transformers.activations import ACT2FN
24
+ from transformers.cache_utils import Cache, HybridCache
25
+ from transformers.generation import GenerationMixin
26
+ from transformers.modeling_outputs import (
27
+ BaseModelOutputWithPast,
28
+ CausalLMOutputWithPast,
29
+ SequenceClassifierOutputWithPast,
30
+ TokenClassifierOutput,
31
+ )
32
+ from transformers.modeling_utils import PreTrainedModel
33
+ from transformers.utils import (
34
+ add_code_sample_docstrings,
35
+ add_start_docstrings,
36
+ add_start_docstrings_to_model_forward,
37
+ is_flash_attn_2_available,
38
+ is_flash_attn_greater_or_equal,
39
+ is_torch_greater_or_equal,
40
+ logging,
41
+ replace_return_docstrings,
42
+ is_flash_attn_greater_or_equal_2_10,
43
+ )
44
+ from transformers import Gemma2Config
45
+
46
+
47
+ if is_flash_attn_2_available():
48
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
49
+
50
+ if is_torch_greater_or_equal("2.5"):
51
+ from torch.nn.attention.flex_attention import flex_attention
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+
56
+ _CHECKPOINT_FOR_DOC = "google/gemma2-7b"
57
+ _CONFIG_FOR_DOC = "Gemma2Config"
58
+
59
+
60
+ class Gemma2RMSNorm(nn.Module):
61
+ def __init__(self, dim: int, eps: float = 1e-6):
62
+ super().__init__()
63
+ self.eps = eps
64
+ self.weight = nn.Parameter(torch.zeros(dim))
65
+
66
+ def _norm(self, x):
67
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
68
+
69
+ def forward(self, x):
70
+ output = self._norm(x.float())
71
+ # Llama does x.to(float16) * w whilst Gemma2 is (x * w).to(float16)
72
+ # See https://github.com/huggingface/transformers/pull/29402
73
+ output = output * (1.0 + self.weight.float())
74
+ return output.type_as(x)
75
+
76
+ def extra_repr(self):
77
+ return f"{tuple(self.weight.shape)}, eps={self.eps}"
78
+
79
+
80
+ class Gemma2MLP(nn.Module):
81
+ def __init__(self, config):
82
+ super().__init__()
83
+ self.config = config
84
+ self.hidden_size = config.hidden_size
85
+ self.intermediate_size = config.intermediate_size
86
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
87
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
88
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
89
+ self.act_fn = ACT2FN[config.hidden_activation]
90
+
91
+ def forward(self, x):
92
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
93
+
94
+
95
+ class Gemma2RotaryEmbedding(nn.Module):
96
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
97
+ super().__init__()
98
+
99
+ self.dim = dim
100
+ self.max_position_embeddings = max_position_embeddings
101
+ self.base = base
102
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
103
+ self.register_buffer("inv_freq", tensor=inv_freq, persistent=False)
104
+
105
+ @torch.no_grad()
106
+ def forward(self, x, position_ids, seq_len=None):
107
+ # x: [bs, num_attention_heads, seq_len, head_size]
108
+ self.inv_freq.to(x.device)
109
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
110
+ position_ids_expanded = position_ids[:, None, :].float()
111
+ # Force float32 since bfloat16 loses precision on long contexts
112
+ # See https://github.com/huggingface/transformers/pull/29285
113
+ device_type = x.device.type
114
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
115
+ with torch.autocast(device_type=device_type, enabled=False):
116
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
117
+ emb = torch.cat((freqs, freqs), dim=-1)
118
+ cos = emb.cos()
119
+ sin = emb.sin()
120
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
121
+
122
+
123
+ def rotate_half(x):
124
+ """Rotates half the hidden dims of the input."""
125
+ x1 = x[..., : x.shape[-1] // 2]
126
+ x2 = x[..., x.shape[-1] // 2 :]
127
+ return torch.cat((-x2, x1), dim=-1)
128
+
129
+
130
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
131
+ """Applies Rotary Position Embedding to the query and key tensors.
132
+
133
+ Args:
134
+ q (`torch.Tensor`): The query tensor.
135
+ k (`torch.Tensor`): The key tensor.
136
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
137
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
138
+ position_ids (`torch.Tensor`, *optional*):
139
+ Deprecated and unused.
140
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
141
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
142
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
143
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
144
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
145
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
146
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
147
+ Returns:
148
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
149
+ """
150
+ cos = cos.unsqueeze(unsqueeze_dim)
151
+ sin = sin.unsqueeze(unsqueeze_dim)
152
+ q_embed = (q * cos) + (rotate_half(q) * sin)
153
+ k_embed = (k * cos) + (rotate_half(k) * sin)
154
+ return q_embed, k_embed
155
+
156
+
157
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
158
+ """
159
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
160
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
161
+ """
162
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
163
+ if n_rep == 1:
164
+ return hidden_states
165
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
166
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
167
+
168
+
169
+ def eager_attention_forward(
170
+ config: Gemma2Config,
171
+ query: torch.Tensor,
172
+ key: torch.Tensor,
173
+ value: torch.Tensor,
174
+ mask: Optional[torch.Tensor],
175
+ **_kwargs,
176
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
177
+ key_states = repeat_kv(key, config.num_key_value_groups)
178
+ value_states = repeat_kv(value, config.num_key_value_groups)
179
+
180
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * config.scaling
181
+
182
+ if config.attn_logit_softcapping is not None:
183
+ attn_weights = attn_weights / config.attn_logit_softcapping
184
+ attn_weights = torch.tanh(attn_weights)
185
+ attn_weights = attn_weights * config.attn_logit_softcapping
186
+ if mask is not None: # no matter the length, we just slice it
187
+ causal_mask = mask[:, :, :, : key_states.shape[-2]]
188
+ attn_weights = attn_weights + causal_mask
189
+
190
+ # upcast attention to fp32
191
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
192
+ attn_weights = nn.functional.dropout(attn_weights, p=config.attention_dropout, training=config.training)
193
+ attn_output = torch.matmul(attn_weights, value_states)
194
+ attn_output = attn_output.transpose(1, 2).contiguous()
195
+ return attn_output, attn_weights
196
+
197
+
198
+ def flash_attention_forward(
199
+ config: Gemma2Config,
200
+ query: torch.Tensor,
201
+ key: torch.Tensor,
202
+ value: torch.Tensor,
203
+ mask: Optional[torch.Tensor],
204
+ target_dtype: torch.dtype = torch.float16,
205
+ **_kwargs,
206
+ ) -> Tuple[torch.Tensor, None]:
207
+ # NOTE: None mask cause un defined https://github.com/huggingface/transformers/blob/c8c8dffbe45ebef0a8dba4a51024e5e5e498596b/src/transformers/models/gemma2/modeling_gemma2.py#L211
208
+ seq_len = query.shape[2]
209
+ if mask is not None:
210
+ query = query[:, :, :seq_len]
211
+ value = value[:, :, :seq_len]
212
+
213
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout
214
+ # [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor rotary embedding
215
+ query_states = query.transpose(1, 2)
216
+ key_states = key.transpose(1, 2)
217
+ value_states = value.transpose(1, 2)
218
+
219
+ dropout_rate = config.attention_dropout if config.training else 0.0
220
+
221
+ input_dtype = query_states.dtype
222
+ if input_dtype == torch.float32:
223
+ query_states = query_states.to(target_dtype)
224
+ key_states = key_states.to(target_dtype)
225
+ value_states = value_states.to(target_dtype)
226
+
227
+ attn_output = _flash_attention_forward(
228
+ query_states,
229
+ key_states,
230
+ value_states,
231
+ mask,
232
+ seq_len,
233
+ dropout=dropout_rate,
234
+ softmax_scale=config.scaling,
235
+ is_causal=config.is_causal,
236
+ sliding_window=config.sliding_window,
237
+ use_top_left_mask=config._flash_attn_uses_top_left_mask,
238
+ softcap=config.attn_logit_softcapping if is_flash_attn_greater_or_equal("2.6.0") else None,
239
+ )
240
+
241
+ return attn_output, None
242
+
243
+
244
+ def flex_attention_forward(
245
+ config: Gemma2Config,
246
+ query: torch.Tensor,
247
+ key: torch.Tensor,
248
+ value: torch.Tensor,
249
+ mask: Optional[torch.Tensor],
250
+ output_attentions: bool = False,
251
+ **_kwargs,
252
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
253
+ def tanh_softcap(score, b, h, q_idx, kv_idx):
254
+ soft_cap = config.attn_logit_softcapping
255
+ score = soft_cap * torch.tanh(score / soft_cap)
256
+ if mask is not None:
257
+ return score + mask[b][0][q_idx][kv_idx]
258
+ return score
259
+
260
+ attn_output = flex_attention(
261
+ query,
262
+ key,
263
+ value,
264
+ score_mod=tanh_softcap,
265
+ enable_gqa=True,
266
+ scale=config.scaling,
267
+ return_lse=output_attentions,
268
+ )
269
+ if not output_attentions:
270
+ attn_weights = None
271
+ else:
272
+ attn_output, attn_weights = attn_output
273
+
274
+ attn_output = attn_output.transpose(1, 2).contiguous()
275
+ return attn_output, attn_weights
276
+
277
+
278
+ def sdpa_attention_forward(
279
+ config: Gemma2Config,
280
+ query: torch.Tensor,
281
+ key: torch.Tensor,
282
+ value: torch.Tensor,
283
+ mask: Optional[torch.Tensor],
284
+ **_kwargs,
285
+ ) -> Tuple[torch.Tensor, None]:
286
+ key = repeat_kv(key, config.num_key_value_groups)
287
+ value = repeat_kv(value, config.num_key_value_groups)
288
+
289
+ causal_mask = mask
290
+ if mask is not None:
291
+ causal_mask = causal_mask[:, :, :, : key.shape[-2]]
292
+
293
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
294
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
295
+ if query.device.type == "cuda" and causal_mask is not None:
296
+ query = query.contiguous()
297
+ key = key.contiguous()
298
+ value = value.contiguous()
299
+
300
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
301
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
302
+ is_causal = True if causal_mask is None and query.shape[1] > 1 else False
303
+
304
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
305
+ query,
306
+ key,
307
+ value,
308
+ attn_mask=causal_mask,
309
+ dropout_p=config.attention_dropout if config.training else 0.0,
310
+ is_causal=is_causal,
311
+ scale=config.scaling,
312
+ )
313
+ attn_output = attn_output.transpose(1, 2).contiguous()
314
+ return attn_output, None
315
+
316
+
317
+ GEMMA2_ATTENTION_FUNCTION = {
318
+ "flash_attention_2": flash_attention_forward,
319
+ "flex_attention": flex_attention_forward,
320
+ "eager": eager_attention_forward,
321
+ "sdpa": sdpa_attention_forward,
322
+ }
323
+
324
+
325
+ class Gemma2Attention(nn.Module):
326
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
327
+
328
+ def __init__(self, config: Gemma2Config, layer_idx: Optional[int] = None):
329
+ super().__init__()
330
+ self.config = config
331
+ self.layer_idx = layer_idx
332
+
333
+ self.attention_dropout = config.attention_dropout
334
+ self.hidden_size = config.hidden_size
335
+ self.num_heads = config.num_attention_heads
336
+ self.head_dim = config.head_dim
337
+ self.num_key_value_heads = config.num_key_value_heads
338
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
339
+ self.max_position_embeddings = config.max_position_embeddings
340
+ self.rope_theta = config.rope_theta
341
+ self.is_causal = True
342
+ self.scaling = config.query_pre_attn_scalar**-0.5
343
+ self.sliding_window = config.sliding_window if not bool(layer_idx % 2) else None
344
+ self.attn_logit_softcapping = config.attn_logit_softcapping
345
+ if self.hidden_size % self.num_heads != 0:
346
+ raise ValueError(
347
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
348
+ f" and `num_heads`: {self.num_heads})."
349
+ )
350
+
351
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
352
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
353
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
354
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
355
+ self.rotary_emb = Gemma2RotaryEmbedding(
356
+ self.head_dim,
357
+ max_position_embeddings=self.max_position_embeddings,
358
+ base=self.rope_theta,
359
+ )
360
+
361
+ # NOTE: gemma2 do not include _flash_attn_uses_top_left_mask for flash attention
362
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
363
+
364
+ def forward(
365
+ self,
366
+ hidden_states: torch.Tensor,
367
+ attention_mask: Optional[torch.Tensor] = None,
368
+ position_ids: Optional[torch.LongTensor] = None,
369
+ past_key_value: Optional[Cache] = None,
370
+ output_attentions: bool = False,
371
+ use_cache: bool = False,
372
+ cache_position: Optional[torch.LongTensor] = None,
373
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
374
+ bsz, q_len, _ = hidden_states.size()
375
+
376
+ query_states = self.q_proj(hidden_states)
377
+ key_states = self.k_proj(hidden_states)
378
+ value_states = self.v_proj(hidden_states)
379
+
380
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
381
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
382
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
383
+
384
+ cos, sin = self.rotary_emb(value_states, position_ids)
385
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
386
+
387
+ if past_key_value is not None:
388
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
389
+ cache_kwargs = {
390
+ "sin": sin,
391
+ "cos": cos,
392
+ "sliding_window": self.sliding_window,
393
+ "cache_position": cache_position,
394
+ }
395
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
396
+
397
+ if output_attentions and self.config._attn_implementation in ["sdpa", "flash_attention_2"]:
398
+ logger.warning_once("Setting `attention_type` to `flex_attention` because `output_attentions=True`")
399
+ attention_type = "flex_attention"
400
+ else:
401
+ attention_type = self.config._attn_implementation
402
+
403
+ attn_output, attn_weights = GEMMA2_ATTENTION_FUNCTION[attention_type](
404
+ self, query_states, key_states, value_states, attention_mask, output_attentions=output_attentions
405
+ )
406
+
407
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
408
+ attn_output = self.o_proj(attn_output)
409
+
410
+ if not output_attentions:
411
+ attn_weights = None
412
+
413
+ return attn_output, attn_weights, past_key_value
414
+
415
+
416
+ class Gemma2FlashAttention2(Gemma2Attention):
417
+ def __init__(self, config: Gemma2Config, layer_idx: Optional[int] = None):
418
+ super().__init__(config, layer_idx)
419
+ self.config._attn_implementation = "flash_attention_2"
420
+ logger.warning_once(
421
+ "The `Gemma2FlashAttention2` class is deprecated in favor of simply modifying the `config._attn_implementation`"
422
+ "attribute of the `GemmaAttention` class! It will be removed in v4.48"
423
+ )
424
+
425
+
426
+ class Gemma2SdpaAttention(Gemma2Attention):
427
+ def __init__(self, config: Gemma2Config, layer_idx: Optional[int] = None):
428
+ super().__init__(config, layer_idx)
429
+ self.config._attn_implementation = "sdpa"
430
+ logger.warning_once(
431
+ "The `Gemma2FlashAttention2` class is deprecated in favor of simply modifying the `config._attn_implementation`"
432
+ "attribute of the `GemmaAttention` class! It will be removed in v4.48"
433
+ )
434
+
435
+
436
+ class Gemma2DecoderLayer(nn.Module):
437
+ def __init__(self, config: Gemma2Config, layer_idx: int):
438
+ super().__init__()
439
+ self.hidden_size = config.hidden_size
440
+ self.config = config
441
+ self.is_sliding = not bool(layer_idx % 2)
442
+ self.self_attn = Gemma2Attention(config=config, layer_idx=layer_idx)
443
+ self.mlp = Gemma2MLP(config)
444
+ self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
445
+ self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
446
+
447
+ self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
448
+ self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
449
+ self.sliding_window = config.sliding_window
450
+
451
+ def forward(
452
+ self,
453
+ hidden_states: torch.Tensor,
454
+ attention_mask: Optional[torch.Tensor] = None,
455
+ position_ids: Optional[torch.LongTensor] = None,
456
+ past_key_value: Optional[Cache] = None,
457
+ output_attentions: Optional[bool] = False,
458
+ use_cache: Optional[bool] = False,
459
+ cache_position: Optional[torch.LongTensor] = None,
460
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
461
+ if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding
462
+ # Flash-attn is a 2D tensor
463
+ if self.config._attn_implementation == "flash_attention_2":
464
+ if past_key_value is not None: # when decoding
465
+ attention_mask = attention_mask[:, -self.sliding_window :]
466
+ else:
467
+ min_dtype = torch.finfo(hidden_states.dtype).min
468
+ sliding_window_mask = torch.tril(
469
+ torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window
470
+ )
471
+ attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
472
+ if attention_mask.shape[-1] <= 1: # when decoding
473
+ attention_mask = attention_mask[:, :, :, -self.sliding_window :]
474
+
475
+ residual = hidden_states
476
+
477
+ hidden_states = self.input_layernorm(hidden_states)
478
+
479
+ # Self Attention
480
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
481
+ hidden_states=hidden_states,
482
+ attention_mask=attention_mask,
483
+ position_ids=position_ids,
484
+ past_key_value=past_key_value,
485
+ output_attentions=output_attentions,
486
+ use_cache=use_cache,
487
+ cache_position=cache_position,
488
+ )
489
+ hidden_states = self.post_attention_layernorm(hidden_states)
490
+ hidden_states = residual + hidden_states
491
+
492
+ residual = hidden_states
493
+ hidden_states = self.pre_feedforward_layernorm(hidden_states)
494
+ hidden_states = self.mlp(hidden_states)
495
+ hidden_states = self.post_feedforward_layernorm(hidden_states)
496
+ hidden_states = residual + hidden_states
497
+
498
+ outputs = (hidden_states,)
499
+
500
+ if output_attentions:
501
+ outputs += (self_attn_weights,)
502
+
503
+ if use_cache:
504
+ outputs += (present_key_value,)
505
+
506
+ return outputs
507
+
508
+
509
+ GEMMA2_START_DOCSTRING = r"""
510
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
511
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
512
+ etc.)
513
+
514
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
515
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
516
+ and behavior.
517
+
518
+ Parameters:
519
+ config ([`Gemma2Config`]):
520
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
521
+ load the weights associated with the model, only the configuration. Check out the
522
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
523
+ """
524
+
525
+
526
+ @add_start_docstrings(
527
+ "The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
528
+ GEMMA2_START_DOCSTRING,
529
+ )
530
+ class Gemma2PreTrainedModel(PreTrainedModel):
531
+ config_class = Gemma2Config
532
+ base_model_prefix = "model"
533
+ supports_gradient_checkpointing = True
534
+ _no_split_modules = ["Gemma2DecoderLayer"]
535
+ _skip_keys_device_placement = ["past_key_values"]
536
+ _supports_flash_attn_2 = True
537
+ _supports_sdpa = True
538
+ _supports_cache_class = True
539
+ _supports_quantized_cache = False
540
+ _supports_static_cache = True
541
+
542
+ def _init_weights(self, module):
543
+ std = self.config.initializer_range
544
+ if isinstance(module, nn.Linear):
545
+ module.weight.data.normal_(mean=0.0, std=std)
546
+ if module.bias is not None:
547
+ module.bias.data.zero_()
548
+ elif isinstance(module, nn.Embedding):
549
+ module.weight.data.normal_(mean=0.0, std=std)
550
+ if module.padding_idx is not None:
551
+ module.weight.data[module.padding_idx].zero_()
552
+
553
+ @classmethod
554
+ def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False):
555
+ """
556
+ Overloads `PreTrainedModel._check_and_enable_sdpa` so as to DISABLE torch SDPA by default on Gemma2 models.
557
+ SDPA reduces the model performance on Gemma2 because of the logits softcapping.
558
+ """
559
+ config = super()._check_and_enable_sdpa(config, hard_check_only=hard_check_only)
560
+
561
+ # if using the default path -> swap sdpa by eager
562
+ if not hard_check_only and config._attn_implementation == "sdpa":
563
+ config._attn_implementation = "eager"
564
+
565
+ return config
566
+
567
+
568
+ GEMMA2_INPUTS_DOCSTRING = r"""
569
+ Args:
570
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
571
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
572
+ it.
573
+
574
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
575
+ [`PreTrainedTokenizer.__call__`] for details.
576
+
577
+ [What are input IDs?](../glossary#input-ids)
578
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
579
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
580
+
581
+ - 1 for tokens that are **not masked**,
582
+ - 0 for tokens that are **masked**.
583
+
584
+ [What are attention masks?](../glossary#attention-mask)
585
+
586
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
587
+ [`PreTrainedTokenizer.__call__`] for details.
588
+
589
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
590
+ `past_key_values`).
591
+
592
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
593
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
594
+ information on the default strategy.
595
+
596
+ - 1 indicates the head is **not masked**,
597
+ - 0 indicates the head is **masked**.
598
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
599
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
600
+ config.n_positions - 1]`.
601
+
602
+ [What are position IDs?](../glossary#position-ids)
603
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
604
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
605
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
606
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
607
+
608
+ Two formats are allowed:
609
+ - a [`~cache_utils.Cache`] instance, see our
610
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
611
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
612
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
613
+ cache format.
614
+
615
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
616
+ legacy cache format will be returned.
617
+
618
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
619
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
620
+ of shape `(batch_size, sequence_length)`.
621
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
622
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
623
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
624
+ model's internal embedding lookup matrix.
625
+ use_cache (`bool`, *optional*):
626
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
627
+ `past_key_values`).
628
+ output_attentions (`bool`, *optional*):
629
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
630
+ tensors for more detail.
631
+ output_hidden_states (`bool`, *optional*):
632
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
633
+ more detail.
634
+ return_dict (`bool`, *optional*):
635
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
636
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
637
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
638
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
639
+ the complete sequence length.
640
+ """
641
+
642
+
643
+ @add_start_docstrings(
644
+ "The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
645
+ GEMMA2_START_DOCSTRING,
646
+ )
647
+ class Gemma2Model(Gemma2PreTrainedModel):
648
+ """
649
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Gemma2DecoderLayer`]
650
+
651
+ Args:
652
+ config: Gemma2Config
653
+ """
654
+
655
+ def __init__(self, config: Gemma2Config):
656
+ super().__init__(config)
657
+ self.padding_idx = config.pad_token_id
658
+ self.vocab_size = config.vocab_size
659
+
660
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
661
+ self.layers = nn.ModuleList(
662
+ [Gemma2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
663
+ )
664
+ self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
665
+
666
+ self.gradient_checkpointing = False
667
+ if getattr(config, "pretraining_tp", 1) != 1:
668
+ logger.warn("`pretraining_tp` is deprecated, please use `model.tensor_parallel` instead.")
669
+
670
+ # Initialize weights and apply final processing
671
+ self.post_init()
672
+
673
+ def get_input_embeddings(self):
674
+ return self.embed_tokens
675
+
676
+ def set_input_embeddings(self, value):
677
+ self.embed_tokens = value
678
+
679
+ @add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
680
+ def forward(
681
+ self,
682
+ input_ids: torch.LongTensor = None,
683
+ attention_mask: Optional[torch.Tensor] = None,
684
+ position_ids: Optional[torch.LongTensor] = None,
685
+ past_key_values: Optional[HybridCache] = None,
686
+ inputs_embeds: Optional[torch.FloatTensor] = None,
687
+ use_cache: Optional[bool] = None,
688
+ output_attentions: Optional[bool] = None,
689
+ output_hidden_states: Optional[bool] = None,
690
+ return_dict: Optional[bool] = None,
691
+ cache_position: Optional[torch.LongTensor] = None,
692
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
693
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
694
+ output_hidden_states = (
695
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
696
+ )
697
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
698
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
699
+
700
+ if (input_ids is None) ^ (inputs_embeds is not None):
701
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
702
+
703
+ if self.gradient_checkpointing and self.training and use_cache:
704
+ logger.warning_once(
705
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
706
+ )
707
+ use_cache = False
708
+
709
+ if inputs_embeds is None:
710
+ inputs_embeds = self.embed_tokens(input_ids)
711
+
712
+ if use_cache and past_key_values is None and not self.training:
713
+ batch_size, seq_len, _ = inputs_embeds.shape
714
+ past_key_values = HybridCache(
715
+ self.config,
716
+ batch_size=batch_size,
717
+ max_cache_len=seq_len,
718
+ device=self.device,
719
+ dtype=inputs_embeds.dtype,
720
+ )
721
+
722
+ if cache_position is None:
723
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
724
+ cache_position = torch.arange(
725
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
726
+ )
727
+
728
+ if position_ids is None:
729
+ position_ids = cache_position.unsqueeze(0)
730
+
731
+ causal_mask = self._update_causal_mask(
732
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
733
+ )
734
+
735
+ # embed positions
736
+ hidden_states = inputs_embeds
737
+
738
+ # normalized
739
+ # Gemma2 downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
740
+ # See https://github.com/huggingface/transformers/pull/29402
741
+ normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
742
+ hidden_states = hidden_states * normalizer
743
+
744
+ # decoder layers
745
+ all_hidden_states = () if output_hidden_states else None
746
+ all_self_attns = () if output_attentions else None
747
+
748
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
749
+ if output_hidden_states:
750
+ all_hidden_states += (hidden_states,)
751
+
752
+ if self.gradient_checkpointing and self.training:
753
+ layer_outputs = self._gradient_checkpointing_func(
754
+ decoder_layer.__call__,
755
+ hidden_states,
756
+ causal_mask,
757
+ position_ids,
758
+ past_key_values,
759
+ output_attentions,
760
+ use_cache,
761
+ cache_position,
762
+ )
763
+ else:
764
+ layer_outputs = decoder_layer(
765
+ hidden_states,
766
+ attention_mask=causal_mask,
767
+ position_ids=position_ids,
768
+ past_key_value=past_key_values,
769
+ output_attentions=output_attentions,
770
+ use_cache=use_cache,
771
+ cache_position=cache_position,
772
+ )
773
+
774
+ hidden_states = layer_outputs[0]
775
+
776
+ if output_attentions:
777
+ all_self_attns += (layer_outputs[1],)
778
+
779
+ hidden_states = self.norm(hidden_states)
780
+
781
+ if output_hidden_states:
782
+ all_hidden_states += (hidden_states,)
783
+
784
+ next_cache = past_key_values if use_cache else None
785
+
786
+ if not return_dict:
787
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
788
+ return BaseModelOutputWithPast(
789
+ last_hidden_state=hidden_states,
790
+ past_key_values=next_cache,
791
+ hidden_states=all_hidden_states,
792
+ attentions=all_self_attns,
793
+ )
794
+
795
+ @torch.no_grad()
796
+ def _update_causal_mask(
797
+ self,
798
+ attention_mask: torch.Tensor,
799
+ input_tensor: torch.Tensor,
800
+ cache_position: torch.Tensor,
801
+ past_key_values: HybridCache,
802
+ output_attentions: bool,
803
+ ):
804
+ # Flash Attention currently doesn't support static cache but Gemma2 work only with static cache.
805
+ # So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape
806
+ # to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible
807
+ # as it doesn't cause dynamic control issues.
808
+ if self.config._attn_implementation == "flash_attention_2":
809
+ return attention_mask
810
+
811
+ dtype, device = input_tensor.dtype, input_tensor.device
812
+ sequence_length = input_tensor.shape[1]
813
+ if isinstance(past_key_values, HybridCache):
814
+ target_length = past_key_values.get_max_cache_shape()
815
+ else:
816
+ target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]
817
+
818
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
819
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
820
+ attention_mask,
821
+ sequence_length=sequence_length,
822
+ target_length=target_length,
823
+ dtype=dtype,
824
+ device=device,
825
+ cache_position=cache_position,
826
+ batch_size=input_tensor.shape[0],
827
+ )
828
+ return causal_mask
829
+
830
+ @staticmethod
831
+ def _prepare_4d_causal_attention_mask_with_cache_position(
832
+ attention_mask: torch.Tensor,
833
+ sequence_length: int,
834
+ target_length: int,
835
+ dtype: torch.dtype,
836
+ device: torch.device,
837
+ cache_position: torch.Tensor,
838
+ batch_size: int,
839
+ **kwargs,
840
+ ):
841
+ """
842
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
843
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
844
+
845
+ Args:
846
+ attention_mask (`torch.Tensor`):
847
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
848
+ `(batch_size, 1, query_length, key_value_length)`.
849
+ sequence_length (`int`):
850
+ The sequence length being processed.
851
+ target_length (`int`):
852
+ The target length: when generating with static cache, the mask should be as long as the static cache,
853
+ to account for the 0 padding, the part of the cache that is not filled yet.
854
+ dtype (`torch.dtype`):
855
+ The dtype to use for the 4D attention mask.
856
+ device (`torch.device`):
857
+ The device to plcae the 4D attention mask on.
858
+ cache_position (`torch.Tensor`):
859
+ Indices depicting the position of the input sequence tokens in the sequence.
860
+ batch_size (`torch.Tensor`):
861
+ Batch size.
862
+ """
863
+ if attention_mask is not None and attention_mask.dim() == 4:
864
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
865
+ causal_mask = attention_mask
866
+ else:
867
+ min_dtype = torch.finfo(dtype).min
868
+ causal_mask = torch.full(
869
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
870
+ )
871
+ if sequence_length != 1:
872
+ causal_mask = torch.triu(causal_mask, diagonal=1)
873
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
874
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
875
+ if attention_mask is not None:
876
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
877
+ mask_length = attention_mask.shape[-1]
878
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
879
+ padding_mask = padding_mask == 0
880
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
881
+ padding_mask, min_dtype
882
+ )
883
+
884
+ return causal_mask
885
+
886
+
887
+ class Gemma2ForCausalLM(Gemma2PreTrainedModel, GenerationMixin):
888
+ _tied_weights_keys = ["lm_head.weight"]
889
+ _tp_plan = {"lm_head": "colwise_rep"}
890
+
891
+ def __init__(self, config):
892
+ super().__init__(config)
893
+ self.model = Gemma2Model(config)
894
+ self.vocab_size = config.vocab_size
895
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
896
+
897
+ # Initialize weights and apply final processing
898
+ self.post_init()
899
+
900
+ def get_input_embeddings(self):
901
+ return self.model.embed_tokens
902
+
903
+ def set_input_embeddings(self, value):
904
+ self.model.embed_tokens = value
905
+
906
+ def get_output_embeddings(self):
907
+ return self.lm_head
908
+
909
+ def set_output_embeddings(self, new_embeddings):
910
+ self.lm_head = new_embeddings
911
+
912
+ def set_decoder(self, decoder):
913
+ self.model = decoder
914
+
915
+ def get_decoder(self):
916
+ return self.model
917
+
918
+ @add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
919
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
920
+ def forward(
921
+ self,
922
+ input_ids: torch.LongTensor = None,
923
+ attention_mask: Optional[torch.Tensor] = None,
924
+ position_ids: Optional[torch.LongTensor] = None,
925
+ past_key_values: Optional[HybridCache] = None,
926
+ inputs_embeds: Optional[torch.FloatTensor] = None,
927
+ labels: Optional[torch.LongTensor] = None,
928
+ use_cache: Optional[bool] = None,
929
+ output_attentions: Optional[bool] = None,
930
+ output_hidden_states: Optional[bool] = None,
931
+ return_dict: Optional[bool] = None,
932
+ cache_position: Optional[torch.LongTensor] = None,
933
+ num_logits_to_keep: int = 0,
934
+ **loss_kwargs,
935
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
936
+ r"""
937
+ Args:
938
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
939
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
940
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
941
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
942
+
943
+ num_logits_to_keep (`int`, *optional*):
944
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
945
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
946
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
947
+
948
+ Returns:
949
+
950
+ Example:
951
+
952
+ ```python
953
+ >>> from transformers import AutoTokenizer, GemmaForCausalLM
954
+
955
+ >>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b")
956
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
957
+
958
+ >>> prompt = "What is your favorite condiment?"
959
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
960
+
961
+ >>> # Generate
962
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
963
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
964
+ "What is your favorite condiment?"
965
+ ```"""
966
+
967
+ if self.training and self.config._attn_implementation != "eager":
968
+ logger.warning_once(
969
+ "It is strongly recommended to train Gemma2 models with the `eager` attention implementation "
970
+ f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
971
+ )
972
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
973
+ output_hidden_states = (
974
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
975
+ )
976
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
977
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
978
+ outputs = self.model(
979
+ input_ids=input_ids,
980
+ attention_mask=attention_mask,
981
+ position_ids=position_ids,
982
+ past_key_values=past_key_values,
983
+ inputs_embeds=inputs_embeds,
984
+ use_cache=use_cache,
985
+ output_attentions=output_attentions,
986
+ output_hidden_states=output_hidden_states,
987
+ return_dict=return_dict,
988
+ cache_position=cache_position,
989
+ )
990
+
991
+ hidden_states = outputs[0]
992
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
993
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
994
+ if self.config.final_logit_softcapping is not None:
995
+ logits = logits / self.config.final_logit_softcapping
996
+ logits = torch.tanh(logits)
997
+ logits = logits * self.config.final_logit_softcapping
998
+
999
+ loss = None
1000
+ if labels is not None:
1001
+ loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
1002
+
1003
+ if not return_dict:
1004
+ output = (logits,) + outputs[1:]
1005
+ return (loss,) + output if loss is not None else output
1006
+
1007
+ return CausalLMOutputWithPast(
1008
+ loss=loss,
1009
+ logits=logits,
1010
+ past_key_values=outputs.past_key_values,
1011
+ hidden_states=outputs.hidden_states,
1012
+ attentions=outputs.attentions,
1013
+ )
1014
+
1015
+ def prepare_inputs_for_generation(
1016
+ self,
1017
+ input_ids,
1018
+ past_key_values=None,
1019
+ attention_mask=None,
1020
+ inputs_embeds=None,
1021
+ cache_position=None,
1022
+ position_ids=None,
1023
+ use_cache=True,
1024
+ num_logits_to_keep=None,
1025
+ **kwargs,
1026
+ ):
1027
+ # Overwritten: has a special cache type, `HybridCache`
1028
+
1029
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
1030
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
1031
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
1032
+ if past_key_values is not None:
1033
+ if inputs_embeds is not None: # Exception 1
1034
+ input_ids = input_ids[:, -cache_position.shape[0] :]
1035
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
1036
+ input_ids = input_ids[:, cache_position]
1037
+ if attention_mask is not None and position_ids is None:
1038
+ # create position_ids on the fly for batch generation
1039
+ position_ids = attention_mask.long().cumsum(-1) - 1
1040
+ position_ids.masked_fill_(attention_mask == 0, 1)
1041
+ if past_key_values:
1042
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1043
+ # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s
1044
+ # `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride
1045
+ # during the decoding. Here, simply using `.contiguous()` is not sufficient as in the
1046
+ # batch size = 1 case, `position_ids` is already contiguous but with varying stride
1047
+ # which retriggers a capture.
1048
+ position_ids = position_ids.clone(memory_format=torch.contiguous_format)
1049
+
1050
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1051
+ if inputs_embeds is not None and cache_position[0] == 0:
1052
+ model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
1053
+ else:
1054
+ # The clone here is for the same reason as for `position_ids`.
1055
+ model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
1056
+
1057
+ if (
1058
+ isinstance(past_key_values, HybridCache)
1059
+ and attention_mask.ndim == 2
1060
+ and not self.config._attn_implementation == "flash_attention_2"
1061
+ ):
1062
+ if model_inputs["inputs_embeds"] is not None:
1063
+ batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
1064
+ device = model_inputs["inputs_embeds"].device
1065
+ else:
1066
+ batch_size, sequence_length = model_inputs["input_ids"].shape
1067
+ device = model_inputs["input_ids"].device
1068
+
1069
+ attention_mask = self.model._prepare_4d_causal_attention_mask_with_cache_position(
1070
+ attention_mask,
1071
+ sequence_length=sequence_length,
1072
+ target_length=past_key_values.get_max_cache_shape(),
1073
+ dtype=self.lm_head.weight.dtype,
1074
+ device=device,
1075
+ cache_position=cache_position,
1076
+ batch_size=batch_size,
1077
+ )
1078
+
1079
+ if num_logits_to_keep is not None:
1080
+ model_inputs["num_logits_to_keep"] = num_logits_to_keep
1081
+
1082
+ model_inputs.update(
1083
+ {
1084
+ "position_ids": position_ids,
1085
+ "cache_position": cache_position,
1086
+ "past_key_values": past_key_values,
1087
+ "use_cache": use_cache,
1088
+ "attention_mask": attention_mask,
1089
+ }
1090
+ )
1091
+ return model_inputs
1092
+
1093
+
1094
+ @add_start_docstrings(
1095
+ """
1096
+ The Gemma2 Model transformer with a sequence classification head on top (linear layer).
1097
+
1098
+ [`Gemma2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1099
+ (e.g. GPT-2) do.
1100
+
1101
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1102
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1103
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1104
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1105
+ each row of the batch).
1106
+ """,
1107
+ GEMMA2_START_DOCSTRING,
1108
+ )
1109
+ class Gemma2ForSequenceClassification(Gemma2PreTrainedModel):
1110
+ def __init__(self, config):
1111
+ super().__init__(config)
1112
+ self.num_labels = config.num_labels
1113
+ self.model = Gemma2Model(config)
1114
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1115
+
1116
+ # Initialize weights and apply final processing
1117
+ self.post_init()
1118
+
1119
+ def get_input_embeddings(self):
1120
+ return self.model.embed_tokens
1121
+
1122
+ def set_input_embeddings(self, value):
1123
+ self.model.embed_tokens = value
1124
+
1125
+ @add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
1126
+ def forward(
1127
+ self,
1128
+ input_ids: Optional[torch.LongTensor] = None,
1129
+ attention_mask: Optional[torch.Tensor] = None,
1130
+ position_ids: Optional[torch.LongTensor] = None,
1131
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1132
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1133
+ labels: Optional[torch.LongTensor] = None,
1134
+ use_cache: Optional[bool] = None,
1135
+ output_attentions: Optional[bool] = None,
1136
+ output_hidden_states: Optional[bool] = None,
1137
+ return_dict: Optional[bool] = None,
1138
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1139
+ r"""
1140
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1141
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1142
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1143
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1144
+ """
1145
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1146
+
1147
+ transformer_outputs = self.model(
1148
+ input_ids,
1149
+ attention_mask=attention_mask,
1150
+ position_ids=position_ids,
1151
+ past_key_values=past_key_values,
1152
+ inputs_embeds=inputs_embeds,
1153
+ use_cache=use_cache,
1154
+ output_attentions=output_attentions,
1155
+ output_hidden_states=output_hidden_states,
1156
+ return_dict=return_dict,
1157
+ )
1158
+ hidden_states = transformer_outputs[0]
1159
+ logits = self.score(hidden_states)
1160
+
1161
+ if input_ids is not None:
1162
+ batch_size = input_ids.shape[0]
1163
+ else:
1164
+ batch_size = inputs_embeds.shape[0]
1165
+
1166
+ if self.config.pad_token_id is None and batch_size != 1:
1167
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1168
+ if self.config.pad_token_id is None:
1169
+ sequence_lengths = -1
1170
+ else:
1171
+ if input_ids is not None:
1172
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1173
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1174
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1175
+ sequence_lengths = sequence_lengths.to(logits.device)
1176
+ else:
1177
+ sequence_lengths = -1
1178
+
1179
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1180
+
1181
+ loss = None
1182
+ if labels is not None:
1183
+ loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
1184
+
1185
+ if not return_dict:
1186
+ output = (pooled_logits,) + transformer_outputs[1:]
1187
+ return ((loss,) + output) if loss is not None else output
1188
+
1189
+ return SequenceClassifierOutputWithPast(
1190
+ loss=loss,
1191
+ logits=pooled_logits,
1192
+ past_key_values=transformer_outputs.past_key_values,
1193
+ hidden_states=transformer_outputs.hidden_states,
1194
+ attentions=transformer_outputs.attentions,
1195
+ )
1196
+
1197
+
1198
+ @add_start_docstrings(
1199
+ """
1200
+ The Gemma2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1201
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1202
+ """,
1203
+ GEMMA2_START_DOCSTRING,
1204
+ )
1205
+ class Gemma2ForTokenClassification(Gemma2PreTrainedModel):
1206
+ def __init__(self, config):
1207
+ super().__init__(config)
1208
+ self.num_labels = config.num_labels
1209
+ self.model = Gemma2Model(config)
1210
+ if getattr(config, "classifier_dropout", None) is not None:
1211
+ classifier_dropout = config.classifier_dropout
1212
+ elif getattr(config, "hidden_dropout", None) is not None:
1213
+ classifier_dropout = config.hidden_dropout
1214
+ else:
1215
+ classifier_dropout = 0.1
1216
+ self.dropout = nn.Dropout(classifier_dropout)
1217
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1218
+
1219
+ # Initialize weights and apply final processing
1220
+ self.post_init()
1221
+
1222
+ def get_input_embeddings(self):
1223
+ return self.model.embed_tokens
1224
+
1225
+ def set_input_embeddings(self, value):
1226
+ self.model.embed_tokens = value
1227
+
1228
+ @add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
1229
+ @add_code_sample_docstrings(
1230
+ checkpoint=_CHECKPOINT_FOR_DOC,
1231
+ output_type=TokenClassifierOutput,
1232
+ config_class=_CONFIG_FOR_DOC,
1233
+ )
1234
+ def forward(
1235
+ self,
1236
+ input_ids: Optional[torch.LongTensor] = None,
1237
+ attention_mask: Optional[torch.Tensor] = None,
1238
+ position_ids: Optional[torch.LongTensor] = None,
1239
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1240
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1241
+ labels: Optional[torch.LongTensor] = None,
1242
+ use_cache: Optional[bool] = None,
1243
+ output_attentions: Optional[bool] = None,
1244
+ output_hidden_states: Optional[bool] = None,
1245
+ return_dict: Optional[bool] = None,
1246
+ ) -> Union[Tuple, TokenClassifierOutput]:
1247
+ r"""
1248
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1249
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1250
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1251
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1252
+ """
1253
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1254
+
1255
+ outputs = self.model(
1256
+ input_ids,
1257
+ attention_mask=attention_mask,
1258
+ position_ids=position_ids,
1259
+ past_key_values=past_key_values,
1260
+ inputs_embeds=inputs_embeds,
1261
+ use_cache=use_cache,
1262
+ output_attentions=output_attentions,
1263
+ output_hidden_states=output_hidden_states,
1264
+ return_dict=return_dict,
1265
+ )
1266
+ sequence_output = outputs[0]
1267
+ sequence_output = self.dropout(sequence_output)
1268
+ logits = self.score(sequence_output)
1269
+
1270
+ loss = None
1271
+ if labels is not None:
1272
+ loss = self.loss_function(logits, labels, self.config)
1273
+
1274
+ if not return_dict:
1275
+ output = (logits,) + outputs[2:]
1276
+ return ((loss,) + output) if loss is not None else output
1277
+
1278
+ return TokenClassifierOutput(
1279
+ loss=loss,
1280
+ logits=logits,
1281
+ hidden_states=outputs.hidden_states,
1282
+ attentions=outputs.attentions,
1283
+ )
modeling_spatialvla.py ADDED
@@ -0,0 +1,528 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """PyTorch PaliGemmamodel."""
16
+
17
+ from dataclasses import dataclass
18
+ from typing import List, Optional, Tuple, Union
19
+
20
+ import os
21
+ import torch
22
+ import torch.utils.checkpoint
23
+ from torch import nn
24
+ from torch.linalg import inv
25
+ import torchvision.transforms.functional as TF
26
+ import torch.nn.functional as F
27
+ from transformers.cache_utils import Cache, HybridCache, StaticCache
28
+ from transformers.generation import GenerationMixin
29
+ from transformers.modeling_utils import PreTrainedModel, PretrainedConfig
30
+ from transformers.utils import (
31
+ ModelOutput,
32
+ logging,
33
+ )
34
+ from .configuration_spatialvla import SpatialVLAConfig
35
+ from .modeling_gemma2 import Gemma2ForCausalLM
36
+ from transformers import AutoModel, ZoeDepthForDepthEstimation
37
+
38
+ SIGLIP_MEAN, SIGLIP_STD = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)
39
+ ZOE_MEAN, ZOE_STD = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)
40
+
41
+ logger = logging.get_logger(__name__)
42
+
43
+ class Ego3DPositionEmbeddingMLP(nn.Module):
44
+ """Absolute pos embedding, learned.
45
+ https://github.com/kwea123/nerf_pl/blob/52aeb387da64a9ad9a0f914ea9b049ffc598b20c/models/nerf.py#L4
46
+ """
47
+
48
+ def __init__(self, in_channels=3, num_pos_feats=768, n_freqs=8, logscale=True):
49
+ super(Ego3DPositionEmbeddingMLP, self).__init__()
50
+ self.n_freqs = n_freqs
51
+ self.freq_out_channels = in_channels * (2 * n_freqs + 1)
52
+ if logscale:
53
+ freq_bands = 2 ** torch.linspace(0, n_freqs - 1, n_freqs)
54
+ else:
55
+ freq_bands = torch.linspace(1, 2 ** (n_freqs - 1), n_freqs)
56
+
57
+ center = torch.tensor([0., 0., 2.]).repeat(in_channels // 3)
58
+ self.register_buffer("freq_bands", freq_bands, persistent=False)
59
+ self.register_buffer("center", center, persistent=False)
60
+
61
+ self.position_embedding_head = nn.Sequential(
62
+ nn.Linear(self.freq_out_channels, num_pos_feats),
63
+ nn.LayerNorm(num_pos_feats),
64
+ nn.ReLU(),
65
+ nn.Linear(num_pos_feats, num_pos_feats),
66
+ )
67
+ self._reset_parameters()
68
+
69
+ def _reset_parameters(self):
70
+ """init with small weights to maintain stable training."""
71
+ for p in self.parameters():
72
+ if p.dim() > 1:
73
+ nn.init.xavier_uniform_(p, gain=0.01)
74
+
75
+ @torch.no_grad()
76
+ def frequency_encoding(self, xyz):
77
+ """
78
+ Embeds x to (x, sin(2^k x), cos(2^k x), ...)
79
+ Different from the paper, "x" is also in the output
80
+ See https://github.com/bmild/nerf/issues/12
81
+ x \in [-2, 2]
82
+ y \in [-2, 2]
83
+ z \in [0., 4]
84
+ Inputs:
85
+ x: (b n m)
86
+ Outputs:
87
+ out: (b n o)
88
+ """
89
+ xyz_n = ((xyz - self.center) / 2.0).to(self.freq_bands.dtype)
90
+ xyz_feq = xyz_n.unsqueeze(-1) * self.freq_bands # (b n m 1)
91
+ sin_xyz, cos_xyz = torch.sin(xyz_feq), torch.cos(xyz_feq) # (b n m nf)
92
+ encoding = torch.cat([xyz_n.unsqueeze(-1), sin_xyz, cos_xyz], -1).reshape(*xyz.shape[:2], -1)
93
+ return encoding
94
+
95
+ def forward(self, xyz):
96
+ """Forward pass, xyz is (B, N, 3or6), output (B, N, F)."""
97
+ freq_encoding = self.frequency_encoding(xyz)
98
+ position_embedding = self.position_embedding_head(freq_encoding)
99
+ return position_embedding
100
+
101
+ def process_zoe(pixel_values, pad_mode="reflect", output_size=(384, 512)):
102
+ """https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/zoedepth/image_processing_zoedepth.py"""
103
+ # h, w = images.shape[-2:]
104
+ # pad
105
+ ph, pw = 31, 31 # int((h / 2)**0.5 * 3), int((w / 2)**0.5 * 3) # 32, 31
106
+ images = F.pad(pixel_values, (pw, pw, ph, ph), mode=pad_mode)
107
+ # resize
108
+ size = (384, 384) # get_resize_output_image_size
109
+ images = F.interpolate(images, size=size, mode="bicubic", align_corners=True)
110
+ # zoe: padding -> resize -> nomalize. we follow `nomalize -> padding -> resize` from siglip
111
+ images = TF.normalize(images, mean=ZOE_MEAN, std=ZOE_STD)
112
+ return images, ph, pw
113
+
114
+ @dataclass
115
+ class SpatialVLACausalLMOutputWithPast(ModelOutput):
116
+ loss: Optional[torch.FloatTensor] = None
117
+ logits: torch.FloatTensor = None
118
+ past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None
119
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
120
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
121
+ image_hidden_states: Optional[torch.FloatTensor] = None
122
+
123
+ class SpatialVLAMultiModalProjector(nn.Module):
124
+ def __init__(self, config: SpatialVLAConfig):
125
+ super().__init__()
126
+ self.linear = nn.Linear(config.vision_config.hidden_size, config.vision_config.projection_dim, bias=True)
127
+
128
+ def forward(self, image_features):
129
+ hidden_states = self.linear(image_features)
130
+ return hidden_states
131
+
132
+ class SpatialVLAPreTrainedModel(PreTrainedModel):
133
+ config_class = SpatialVLAConfig
134
+ base_model_prefix = "model"
135
+ supports_gradient_checkpointing = True
136
+ _no_split_modules = ["SpatialVLAMultiModalProjector", "ZoeDepthForDepthEstimation", "Ego3DPositionEmbeddingMLP"]
137
+ _skip_keys_device_placement = "past_key_values"
138
+ _supports_cache_class = True
139
+ _supports_quantized_cache = True
140
+ _supports_static_cache = True
141
+ _supports_cache_class = True
142
+ _supports_flash_attn_2 = True
143
+ _supports_sdpa = True
144
+
145
+ def _init_weights(self, module):
146
+ std = (
147
+ self.config.initializer_range
148
+ if hasattr(self.config, "initializer_range")
149
+ else self.config.text_config.initializer_range
150
+ )
151
+
152
+ if hasattr(module, "class_embedding"):
153
+ module.class_embedding.data.normal_(mean=0.0, std=std)
154
+
155
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
156
+ module.weight.data.normal_(mean=0.0, std=std)
157
+ if module.bias is not None:
158
+ module.bias.data.zero_()
159
+ elif isinstance(module, nn.Embedding):
160
+ module.weight.data.normal_(mean=0.0, std=std)
161
+ if module.padding_idx is not None:
162
+ module.weight.data[module.padding_idx].zero_()
163
+
164
+ class SpatialVLAForConditionalGeneration(SpatialVLAPreTrainedModel, GenerationMixin):
165
+ def __init__(self, config: SpatialVLAConfig, vision_model=None, vision_zoe_model=None, projector_model=None, language_model=None):
166
+ super().__init__(config)
167
+
168
+ self.vision_tower = vision_model or AutoModel.from_config(config=config.vision_config)
169
+ self.multi_modal_projector = projector_model or SpatialVLAMultiModalProjector(config)
170
+ self.vocab_size = config.text_config.vocab_size
171
+ if language_model is None:
172
+ language_model = Gemma2ForCausalLM(config=config.text_config)
173
+ if language_model._tied_weights_keys is not None:
174
+ self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
175
+ self.language_model = language_model
176
+
177
+ if config.use_vision_zoe:
178
+ self.vision_zoe_model = vision_zoe_model or ZoeDepthForDepthEstimation(config.vision_zoe_config)
179
+ self.position_embedding_3d = Ego3DPositionEmbeddingMLP(
180
+ config.ego3d_patch_reso**2 * 3, num_pos_feats=config.vision_config.hidden_size, n_freqs=config.n_freqs
181
+ )
182
+ # register buffer
183
+ patch_size, reso, image_size = config.vision_config.patch_size, config.ego3d_patch_reso, config.vision_config.image_size
184
+ y, x = torch.meshgrid(torch.arange(0, image_size, patch_size // reso), torch.arange(0, image_size, patch_size // reso), indexing="ij") # (h//sp w//sp)
185
+ y, x = y + patch_size / reso / 2, x + patch_size / reso / 2
186
+ uv_h = torch.stack([x, y, torch.ones_like(x)], dim=0).reshape(3, -1) # (3 hw)
187
+ self.register_buffer("uv_h", uv_h, persistent=False)
188
+
189
+ # shared spatial embeddings for <ACTION> <IMG>
190
+ if config.use_spatial_token:
191
+ self.spatial_embed_tokens = nn.Embedding(self.config.spatial_token_num, config.text_config.hidden_size)
192
+ else:
193
+ self.spatial_embed_tokens = None
194
+ self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
195
+
196
+
197
+ def backproject_patch(self, K: torch.Tensor, depth: torch.Tensor, patch_size=14, reso=2) -> torch.Tensor:
198
+ """
199
+ Backproject depth map to 3D points in camera coordinate.
200
+ Args:
201
+ K: camera intrinsic matrix (b 3 3)
202
+ depth: depth map (b 1 h w)
203
+ patch_size: patch size for siglip
204
+ reso: reso^2 -> sample points in each patch
205
+ patch sz = 14 ......
206
+ ┌────────┬────────┐
207
+ │ ─ ─ │ ─ ─ │
208
+ │ points │ ├─ ─ ─
209
+ │ ─ ─ │ ─ ─ │
210
+ ├────────┼────────┤
211
+ │ ─ ─ │ ─ ─ │
212
+ │ │ │
213
+ │ ─ ─ │ ─ ─ │
214
+ └────────┴────────┘
215
+ reso=2───►points=4
216
+
217
+
218
+ """
219
+ b, c, h, w = depth.shape
220
+ hp, wp = h // patch_size, w // patch_size
221
+ sub_hp = sub_wp = reso
222
+ patch_depth = F.interpolate(depth, size=(hp * reso, wp * reso), mode="area").reshape(b, c, -1)
223
+ p_cam = (inv(K.float()) @ self.uv_h.float()) * patch_depth # (b 3 3) @ (3 hw) -> (b 3 hw) * (b 1 hw) -> (b 3 hw)
224
+ patch_p_cam = p_cam.reshape(b, 3, hp, sub_hp, wp, sub_wp).permute(0, 2, 4, 3, 5, 1).reshape(b, hp * wp, -1)
225
+ return patch_p_cam
226
+
227
+ def get_input_embeddings(self):
228
+ return self.language_model.get_input_embeddings()
229
+
230
+ def set_input_embeddings(self, value):
231
+ self.language_model.set_input_embeddings(value)
232
+
233
+ def get_output_embeddings(self):
234
+ return self.language_model.get_output_embeddings()
235
+
236
+ def set_output_embeddings(self, new_embeddings):
237
+ self.language_model.set_output_embeddings(new_embeddings)
238
+
239
+ def set_decoder(self, decoder):
240
+ self.language_model.set_decoder(decoder)
241
+
242
+ def get_decoder(self):
243
+ return self.language_model.get_decoder()
244
+
245
+ def tie_weights(self):
246
+ return self.language_model.tie_weights()
247
+
248
+ def resize_token_embeddings(
249
+ self,
250
+ new_num_tokens: Optional[int] = None,
251
+ pad_to_multiple_of: Optional[int] = None,
252
+ mean_resizing: bool = True,
253
+ ) -> nn.Embedding:
254
+ model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing)
255
+ vocab_size = model_embeds.weight.shape[0]
256
+ self.config.text_config.vocab_size = self.vocab_size = self.config._vocab_size = vocab_size
257
+ self.tie_weights()
258
+ return model_embeds
259
+
260
+ def _update_causal_mask(
261
+ self,
262
+ attention_mask,
263
+ token_type_ids,
264
+ past_key_values,
265
+ cache_position,
266
+ input_ids=None,
267
+ inputs_embeds=None,
268
+ is_training: bool = False,
269
+ ):
270
+ if self.config.text_config._attn_implementation == "flash_attention_2":
271
+ if attention_mask is not None and 0.0 in attention_mask:
272
+ return attention_mask
273
+ return None
274
+
275
+ using_static_cache = isinstance(past_key_values, StaticCache)
276
+ min_dtype = torch.finfo(self.dtype).min
277
+ inputs_lead_dim = input_ids.shape[0] if input_ids is not None else inputs_embeds.shape[0]
278
+ sequence_length = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
279
+ if using_static_cache:
280
+ target_length = past_key_values.get_max_cache_shape()
281
+ elif isinstance(past_key_values, HybridCache):
282
+ target_length = past_key_values.get_max_cache_shape()
283
+ else:
284
+ target_length = (
285
+ attention_mask.shape[-1]
286
+ if isinstance(attention_mask, torch.Tensor)
287
+ else cache_position[0] + sequence_length + 1
288
+ )
289
+
290
+ if attention_mask is not None and attention_mask.dim() == 4:
291
+ return attention_mask
292
+
293
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=self.dtype, device=cache_position.device)
294
+ if sequence_length != 1:
295
+ if is_training: causal_mask = torch.triu(causal_mask, diagonal=1)
296
+ else: causal_mask[:, :sequence_length] = 0.0
297
+
298
+ causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
299
+ causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
300
+ if attention_mask is not None:
301
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
302
+ mask_length = attention_mask.shape[-1]
303
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
304
+ padding_mask = padding_mask == 0
305
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(padding_mask, min_dtype)
306
+ if is_training:
307
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0)
308
+ return causal_mask
309
+
310
+ def get_image_features(self, pixel_values: torch.FloatTensor, intrinsic: torch.FloatTensor):
311
+ siglip_pixel_values = TF.normalize(pixel_values, mean=SIGLIP_MEAN, std=SIGLIP_STD)
312
+ image_outputs = self.vision_tower(siglip_pixel_values)
313
+
314
+ # ego3d position encoding
315
+ if self.config.use_vision_zoe:
316
+ zoe_pixel_values, ph, pw = process_zoe(pixel_values, pad_mode="reflect")
317
+ with torch.no_grad():
318
+ pvh, pvw = pixel_values.shape[-2:]
319
+ depth = self.vision_zoe_model(pixel_values=zoe_pixel_values).predicted_depth
320
+ depth = F.interpolate(
321
+ depth.unsqueeze(1),
322
+ size=(pvh+2*ph, pvw+2*pw),
323
+ mode="bicubic",
324
+ align_corners=True,
325
+ )[..., ph:-ph, pw:-pw]
326
+ xyz = self.backproject_patch(
327
+ intrinsic, depth, patch_size=self.config.vision_config.patch_size, reso=self.config.ego3d_patch_reso
328
+ ) # (b, n, 3*4)
329
+ pos_embed_3d = self.position_embedding_3d(xyz)
330
+ selected_image_feature = image_outputs.last_hidden_state + pos_embed_3d
331
+ else:
332
+ selected_image_feature = image_outputs.last_hidden_state
333
+ image_features = self.multi_modal_projector(selected_image_feature)
334
+ image_features = image_features / (self.config.text_config.hidden_size**0.5)
335
+ return image_features
336
+
337
+ def forward(
338
+ self,
339
+ input_ids: torch.LongTensor = None,
340
+ pixel_values: torch.FloatTensor = None,
341
+ actions: Optional[torch.FloatTensor] = None,
342
+ intrinsic: Optional[torch.Tensor] = None,
343
+ attention_mask: Optional[torch.Tensor] = None,
344
+ position_ids: Optional[torch.LongTensor] = None,
345
+ past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
346
+ token_type_ids: Optional[torch.LongTensor] = None,
347
+ cache_position: Optional[torch.LongTensor] = None,
348
+ inputs_embeds: Optional[torch.FloatTensor] = None,
349
+ labels: Optional[torch.LongTensor] = None,
350
+ use_cache: Optional[bool] = None,
351
+ output_attentions: Optional[bool] = None,
352
+ output_hidden_states: Optional[bool] = None,
353
+ return_dict: Optional[bool] = None,
354
+ num_logits_to_keep: int = 0,
355
+ ) -> Union[Tuple, SpatialVLACausalLMOutputWithPast]:
356
+
357
+ output_attentions = output_attentions or self.config.output_attentions
358
+ output_hidden_states = output_hidden_states or self.config.output_hidden_states
359
+ return_dict = return_dict or self.config.use_return_dict
360
+
361
+ is_training = token_type_ids is not None and labels is not None
362
+
363
+ if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(input_ids).clone() # avoid checkpint grad True
364
+
365
+ if self.config.use_spatial_token:
366
+ spatial_selected = (input_ids >= self.config.action_token_begin_idx) & (input_ids < self.config.action_token_begin_idx + self.config.spatial_token_num)
367
+ inputs_embeds[spatial_selected] = inputs_embeds[spatial_selected] * 0.0 + self.spatial_embed_tokens(input_ids[spatial_selected] - self.config.action_token_begin_idx)
368
+
369
+ if cache_position is None:
370
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
371
+ cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device)
372
+
373
+ if position_ids is None:
374
+ position_ids = cache_position.unsqueeze(0) + 1 # Paligemma positions are 1-indexed
375
+
376
+ # merge
377
+ if pixel_values is not None:
378
+ image_features = self.get_image_features(pixel_values, intrinsic)
379
+ special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
380
+ special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
381
+ if inputs_embeds[special_image_mask].numel() != image_features.numel():
382
+ image_tokens_in_text = torch.sum(input_ids == self.config.image_token_index)
383
+ raise ValueError(
384
+ f"Number of images does not match number of special image tokens in the input text. "
385
+ f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} "
386
+ "tokens from image embeddings."
387
+ )
388
+ image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
389
+ inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
390
+
391
+ # mask out pad-token-ids in labels for BC
392
+ if labels is not None and self.pad_token_id in labels:
393
+ logger.warning_once(
394
+ "`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. ",
395
+ "You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.",
396
+ )
397
+ labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels)
398
+
399
+ causal_mask = self._update_causal_mask(
400
+ attention_mask, token_type_ids, past_key_values, cache_position, input_ids, inputs_embeds, is_training
401
+ )
402
+ outputs = self.language_model(
403
+ attention_mask=causal_mask,
404
+ position_ids=position_ids,
405
+ past_key_values=past_key_values,
406
+ inputs_embeds=inputs_embeds,
407
+ use_cache=use_cache,
408
+ output_attentions=output_attentions,
409
+ output_hidden_states=output_hidden_states,
410
+ return_dict=return_dict,
411
+ cache_position=cache_position,
412
+ num_logits_to_keep=num_logits_to_keep,
413
+ )
414
+
415
+ logits = outputs.logits
416
+ loss = None
417
+ if labels is not None:
418
+ logits = logits.float()
419
+ shift_logits = logits[..., :-1, :]
420
+ shift_labels = labels[..., 1:]
421
+ if attention_mask is not None:
422
+ shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
423
+ shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
424
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
425
+ else:
426
+ shift_logits = shift_logits.contiguous()
427
+ shift_labels = shift_labels.contiguous()
428
+ loss_fct = nn.CrossEntropyLoss()
429
+
430
+ flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
431
+ flat_labels = shift_labels.view(-1).to(shift_logits.device)
432
+ loss = loss_fct(flat_logits, flat_labels)
433
+ if not return_dict:
434
+ output = (logits,) + outputs[1:]
435
+ return (loss,) + output if loss is not None else output
436
+
437
+ return SpatialVLACausalLMOutputWithPast(
438
+ loss=loss,
439
+ logits=logits,
440
+ past_key_values=outputs.past_key_values,
441
+ hidden_states=outputs.hidden_states,
442
+ attentions=outputs.attentions,
443
+ image_hidden_states=image_features if pixel_values is not None else None,
444
+ )
445
+
446
+ # AR inference
447
+ def prepare_inputs_for_generation(
448
+ self,
449
+ input_ids,
450
+ past_key_values=None,
451
+ inputs_embeds=None,
452
+ cache_position=None,
453
+ position_ids=None,
454
+ pixel_values=None,
455
+ intrinsic=None,
456
+ attention_mask=None,
457
+ token_type_ids=None,
458
+ use_cache=True,
459
+ num_logits_to_keep=None,
460
+ labels=None,
461
+ **kwargs,
462
+ ):
463
+ model_inputs = self.language_model.prepare_inputs_for_generation(
464
+ input_ids,
465
+ past_key_values=past_key_values,
466
+ inputs_embeds=inputs_embeds,
467
+ attention_mask=attention_mask,
468
+ position_ids=position_ids,
469
+ cache_position=cache_position,
470
+ use_cache=use_cache,
471
+ num_logits_to_keep=num_logits_to_keep,
472
+ token_type_ids=token_type_ids,
473
+ **kwargs,
474
+ )
475
+ if model_inputs.get("position_ids") is not None:
476
+ model_inputs["position_ids"] += 1
477
+ if cache_position[0] == 0:
478
+ model_inputs["pixel_values"] = pixel_values
479
+ is_training = token_type_ids is not None and labels is not None
480
+ if cache_position[0] == 0 and isinstance(past_key_values, HybridCache):
481
+ causal_mask = self._update_causal_mask(attention_mask, token_type_ids, past_key_values, cache_position, input_ids, inputs_embeds, is_training)
482
+ model_inputs["attention_mask"] = causal_mask
483
+ model_inputs["intrinsic"] = intrinsic
484
+ return model_inputs
485
+
486
+ @torch.no_grad()
487
+ def predict_action(
488
+ self,
489
+ model_inputs,
490
+ ) -> torch.Tensor:
491
+ model_inputs = model_inputs.to(torch.bfloat16).to(self.device)
492
+ input_len = model_inputs["input_ids"].shape[-1]
493
+ generation_outputs = self.generate(**model_inputs, max_new_tokens=256, do_sample=False)
494
+ return generation_outputs[:,input_len:]
495
+
496
+ @classmethod
497
+ def from_pretrained(
498
+ cls,
499
+ pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
500
+ *model_args,
501
+ config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
502
+ cache_dir: Optional[Union[str, os.PathLike]] = None,
503
+ ignore_mismatched_sizes: bool = False,
504
+ force_download: bool = False,
505
+ local_files_only: bool = False,
506
+ token: Optional[Union[str, bool]] = None,
507
+ revision: str = "main",
508
+ use_safetensors: Optional[bool] = None,
509
+ weights_only: bool = True,
510
+ **kwargs,
511
+ ):
512
+ model = super().from_pretrained(
513
+ pretrained_model_name_or_path,
514
+ *model_args,
515
+ config=config,
516
+ cache_dir=cache_dir,
517
+ ignore_mismatched_sizes=ignore_mismatched_sizes,
518
+ force_download=force_download,
519
+ local_files_only=local_files_only,
520
+ token=token,
521
+ revision=revision,
522
+ use_safetensors=use_safetensors,
523
+ weights_only=weights_only,
524
+ **kwargs,
525
+ )
526
+ if model.config.use_spatial_token:
527
+ model.language_model.model.embed_tokens.weight.data[-model.config.spatial_token_num:] = model.spatial_embed_tokens.weight.data
528
+ return model
preprocessor_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_spatialvla.SpatialVLAProcessor"
4
+ },
5
+ "do_convert_rgb": null,
6
+ "do_normalize": false,
7
+ "do_rescale": true,
8
+ "do_resize": true,
9
+ "image_mean": [
10
+ 0.5,
11
+ 0.5,
12
+ 0.5
13
+ ],
14
+ "image_processor_type": "SiglipImageProcessor",
15
+ "image_seq_length": 256,
16
+ "image_std": [
17
+ 0.5,
18
+ 0.5,
19
+ 0.5
20
+ ],
21
+ "processor_class": "SpatialVLAProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "height": 224,
26
+ "width": 224
27
+ }
28
+ }
processing_spatialvla.py ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ import logging
16
+ from typing import List, Optional, Union, Dict
17
+ import numpy as np
18
+ import torch
19
+ from transformers.feature_extraction_utils import BatchFeature
20
+ from transformers.image_utils import ImageInput, is_valid_image
21
+ from transformers.processing_utils import Unpack, _validate_images_text_input_order, ProcessorMixin
22
+ from transformers.tokenization_utils_base import AddedToken, PreTokenizedInput, TextInput
23
+ from transformers.utils import logging
24
+ from transformers.models.paligemma.processing_paligemma import (
25
+ make_batched_images,
26
+ build_string_from_input,
27
+ _is_str_or_image,
28
+ PaliGemmaProcessorKwargs,
29
+ IMAGE_TOKEN,
30
+ EXTRA_TOKENS
31
+ )
32
+ from .action_tokenizer import SpatialActionTokenizer
33
+ logger = logging.get_logger(__name__)
34
+
35
+ class SpatialVLAProcessor(ProcessorMixin):
36
+ attributes = ["image_processor", "tokenizer"]
37
+ valid_kwargs = ["chat_template"]
38
+ image_processor_class = "SiglipImageProcessor"
39
+ tokenizer_class = ("GemmaTokenizer", "GemmaTokenizerFast")
40
+
41
+ def __init__(
42
+ self,
43
+ image_processor=None,
44
+ tokenizer=None,
45
+ chat_template=None,
46
+ statistics: Optional[dict] = None,
47
+ bin_policy=None,
48
+ intrinsic_config=None,
49
+ action_config=None,
50
+ num_obs_steps=1,
51
+ obs_delta=1,
52
+ action_chunk_size=1,
53
+ min_sigma=0.0,
54
+ **kwargs,
55
+ ):
56
+ if image_processor is None:
57
+ raise ValueError("You need to specify an `image_processor`.")
58
+ if tokenizer is None:
59
+ raise ValueError("You need to specify a `tokenizer`.")
60
+ if not hasattr(image_processor, "image_seq_length"):
61
+ raise ValueError("Image processor is missing an `image_seq_length` attribute.")
62
+
63
+ self.image_seq_length = image_processor.image_seq_length
64
+
65
+ if not hasattr(tokenizer, "image_token"):
66
+ image_token = AddedToken(IMAGE_TOKEN, normalized=False, special=True)
67
+ tokens_to_add = {"additional_special_tokens": [image_token]}
68
+ tokenizer.add_special_tokens(tokens_to_add)
69
+ self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
70
+ else:
71
+ self.image_token_id = tokenizer.image_token_id
72
+
73
+ tokenizer.add_tokens(EXTRA_TOKENS)
74
+ tokenizer.add_bos_token = False
75
+ tokenizer.add_eos_token = False
76
+
77
+ super().__init__(image_processor, tokenizer, chat_template=chat_template)
78
+
79
+ # action tokenizer
80
+ self.statistics = statistics if statistics else {}
81
+ self.bin_policy = bin_policy
82
+ self.min_sigma = min_sigma
83
+ self.intrinsic_config = intrinsic_config
84
+ self.action_config = action_config
85
+ self.num_obs_steps = num_obs_steps
86
+ self.obs_delta = obs_delta
87
+ self.action_chunk_size = action_chunk_size
88
+ self.dataset_intrinsics = {}
89
+ height, width = image_processor.size["height"], image_processor.size["width"]
90
+
91
+ # scale intrinsic matrix
92
+ for k, v in intrinsic_config.items():
93
+ K = torch.tensor(v["intrinsic"]).float()
94
+ K[:2] *= torch.tensor([width / v["width"], height / v["height"]])[:, None]
95
+ self.dataset_intrinsics[k] = K
96
+
97
+ self.action_tokenizer = SpatialActionTokenizer(
98
+ tokenizer=tokenizer, num_bins=action_config["num_bins"],
99
+ bin_policy=bin_policy, use_spherical=action_config["use_spherical"],
100
+ min_sigma=min_sigma,
101
+ )
102
+
103
+ def __call__(
104
+ self,
105
+ images: ImageInput = None,
106
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
107
+ unnorm_key: Optional[str] = None,
108
+ suffix_actions: Optional[np.array] = None, # (t e)
109
+ **kwargs: Unpack[PaliGemmaProcessorKwargs],
110
+ ) -> BatchFeature:
111
+ images, text = _validate_images_text_input_order(images, text)
112
+
113
+ output_kwargs = self._merge_kwargs(
114
+ PaliGemmaProcessorKwargs,
115
+ tokenizer_init_kwargs=self.tokenizer.init_kwargs,
116
+ **kwargs,
117
+ )
118
+ if suffix_actions is not None:
119
+ action_tokens = self.action_tokenizer(suffix_actions) # (n,3)
120
+ suffix="".join(action_tokens.flatten())
121
+ else:
122
+ suffix = output_kwargs["text_kwargs"].pop("suffix", None)
123
+
124
+ return_token_type_ids = True if suffix is not None else False
125
+
126
+ if images is None:
127
+ raise ValueError("`images` are expected as arguments to a `PaliGemmaProcessor` instance.")
128
+ if text is None:
129
+ logger.warning_once( "You are using PaliGemma without a text prefix. It will perform as a picture-captioning model.")
130
+ text = ""
131
+
132
+ if _is_str_or_image(text):
133
+ text = [text]
134
+ elif isinstance(text, list) and _is_str_or_image(text[0]):
135
+ pass
136
+
137
+ if text is not None and images is not None:
138
+ if not any(IMAGE_TOKEN in sample for sample in text):
139
+ if isinstance(text, List) and isinstance(images, List):
140
+ if len(images) != len(text):
141
+ raise ValueError(
142
+ f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image or list of images."
143
+ )
144
+ if is_valid_image(images):
145
+ images = [[images]]
146
+ elif isinstance(images, list) and is_valid_image(images[0]):
147
+ images = [[image] for image in images]
148
+ elif not (isinstance(images, list) and isinstance(images[0], list) and is_valid_image(images[0][0])):
149
+ raise ValueError("images must be an image, list of images or list of list of images")
150
+ if suffix is not None and _is_str_or_image(suffix): suffix = [suffix]
151
+ if suffix is not None: suffix = [sfx + self.tokenizer.eos_token for sfx in suffix]
152
+ input_strings = [
153
+ build_string_from_input(
154
+ prompt=prompt,
155
+ bos_token=self.tokenizer.bos_token,
156
+ image_seq_len=self.image_seq_length,
157
+ image_token=IMAGE_TOKEN,
158
+ num_images=len(image_list) if isinstance(image_list, list) else 1,
159
+ )
160
+ for prompt, image_list in zip(text, images)
161
+ ]
162
+ images = make_batched_images(images)
163
+ else:
164
+ expanded_samples = []
165
+ for sample in text:
166
+ expanded_sample = sample.replace(IMAGE_TOKEN, IMAGE_TOKEN * self.image_seq_length)
167
+ bos_rfind_index = expanded_sample.rfind(IMAGE_TOKEN)
168
+ bos_index = bos_rfind_index + len(IMAGE_TOKEN) if bos_rfind_index != -1 else 0
169
+ expanded_sample = (
170
+ expanded_sample[:bos_index] + self.tokenizer.bos_token + expanded_sample[bos_index:]
171
+ )
172
+ expanded_samples.append(expanded_sample)
173
+ input_strings = [f"{sample}\n" for sample in expanded_samples]
174
+ pixel_values = self.image_processor(images, **output_kwargs["images_kwargs"])["pixel_values"]
175
+
176
+ if output_kwargs["text_kwargs"].get("max_length", None) is not None:
177
+ output_kwargs["text_kwargs"]["max_length"] += self.image_seq_length
178
+
179
+ inputs = self.tokenizer(
180
+ input_strings,
181
+ text_pair=suffix,
182
+ return_token_type_ids=return_token_type_ids,
183
+ **output_kwargs["text_kwargs"],
184
+ )
185
+
186
+ intrinsic = self.dataset_intrinsics[unnorm_key] if unnorm_key in self.dataset_intrinsics else self.dataset_intrinsics["default"]
187
+ return_data = {**inputs, "pixel_values": pixel_values, "intrinsic": intrinsic}
188
+
189
+ if return_token_type_ids:
190
+ labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
191
+ return_data.update({"labels": labels})
192
+ return BatchFeature(data=return_data)
193
+
194
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Gemma
195
+ def batch_decode(self, *args, **kwargs):
196
+ """
197
+ This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
198
+ refer to the docstring of this method for more information.
199
+ """
200
+ return self.tokenizer.batch_decode(*args, **kwargs)
201
+
202
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Gemma
203
+ def decode(self, *args, **kwargs):
204
+ """
205
+ This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
206
+ the docstring of this method for more information.
207
+ """
208
+ return self.tokenizer.decode(*args, **kwargs)
209
+
210
+ @property
211
+ def model_input_names(self):
212
+ tokenizer_input_names = self.tokenizer.model_input_names
213
+ image_processor_input_names = self.image_processor.model_input_names
214
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
215
+
216
+ def decode_actions(
217
+ self,
218
+ generation_outputs: torch.Tensor,
219
+ unnorm_key: Optional[str] = None,
220
+ ) -> Dict[str, torch.Tensor]:
221
+ action_token_num = 3 # translation + rotation + gripper
222
+ predicted_action_token_ids = generation_outputs[0, : action_token_num * self.action_chunk_size].detach().cpu().long().numpy()
223
+ assert self.tokenizer.eos_token != predicted_action_token_ids[-1], "[error] actions contain EOS token, please check you truncation settings!"
224
+
225
+ if predicted_action_token_ids.shape[0] < action_token_num * self.action_chunk_size: # pad with zeros
226
+ logger.warning(f"Padding zero action!")
227
+ predicted_action_token_ids = np.concatenate(
228
+ [
229
+ predicted_action_token_ids,
230
+ np.zeros(action_token_num * self.action_chunk_size - predicted_action_token_ids.shape[0], dtype=np.longlong),
231
+ ]
232
+ )
233
+ predicted_action_token_ids = predicted_action_token_ids.reshape(-1, action_token_num)
234
+ normalized_action_chunks = self.action_tokenizer.decode_token_ids_to_actions(predicted_action_token_ids)
235
+
236
+ if unnorm_key is None:
237
+ logger.warning(f"unnorm_key {unnorm_key} is not in statistics, use next one")
238
+ unnorm_key = next(self.statistics.keys())
239
+ action_norm_stats = self.statistics[unnorm_key]["action"]
240
+
241
+ action_dim = len(action_norm_stats["q01"])
242
+ mask = np.array(action_norm_stats.get("mask", np.ones(action_dim)), dtype=bool)
243
+ action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"])
244
+
245
+ actions = []
246
+ for normalized_actions in normalized_action_chunks:
247
+ action = np.where(
248
+ mask,
249
+ 0.5 * (normalized_actions + 1) * (action_high - action_low) + action_low,
250
+ normalized_actions,
251
+ )
252
+ actions.append(action)
253
+ actions = np.stack(actions)
254
+ return {"actions": actions, "action_ids": predicted_action_token_ids}
processor_config.json ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "action_chunk_size": 4,
3
+ "action_config": {
4
+ "distribution": "gaussian",
5
+ "num_bins": {
6
+ "gripper": 2,
7
+ "rotation": {
8
+ "pitch_bins": 16,
9
+ "roll_bins": 16,
10
+ "yaw_bins": 16
11
+ },
12
+ "total": 8194,
13
+ "translation": {
14
+ "phi_bins": 32,
15
+ "r_bins": 8,
16
+ "theta_bins": 16
17
+ }
18
+ },
19
+ "use_spherical": true
20
+ },
21
+ "auto_map": {
22
+ "AutoProcessor": "processing_spatialvla.SpatialVLAProcessor"
23
+ },
24
+ "bin_policy": {
25
+ "rotation": {
26
+ "pitch_bins": [
27
+ -1.0,
28
+ -0.4236293919771139,
29
+ -0.2973624970533583,
30
+ -0.21059576820767317,
31
+ -0.14044938844843713,
32
+ -0.0791789125851777,
33
+ -0.023048480293744636,
34
+ 0.030167161843358437,
35
+ 0.08204200739679071,
36
+ 0.13389374587953162,
37
+ 0.18703587338481154,
38
+ 0.24302765601977616,
39
+ 0.30406026229156,
40
+ 0.37378821800324374,
41
+ 0.45971873753598247,
42
+ 0.5836276162507279,
43
+ 0.9999999999999991
44
+ ],
45
+ "roll_bins": [
46
+ -0.9999999999999999,
47
+ -0.48696292418679255,
48
+ -0.3676073739484146,
49
+ -0.28549591499691584,
50
+ -0.21907612836502022,
51
+ -0.16103745543314568,
52
+ -0.10784881328909159,
53
+ -0.05740408497876547,
54
+ -0.00821079709993185,
55
+ 0.040983744804115825,
56
+ 0.0914324636886914,
57
+ 0.144628635967148,
58
+ 0.20268023967111456,
59
+ 0.269122809861373,
60
+ 0.35127995163586373,
61
+ 0.4707654855904555,
62
+ 0.9999999999999944
63
+ ],
64
+ "yaw_bins": [
65
+ -1.0,
66
+ -0.4473279373756505,
67
+ -0.3332741619243962,
68
+ -0.25494122059754437,
69
+ -0.19161826850058544,
70
+ -0.1363039890445066,
71
+ -0.08562203792073503,
72
+ -0.03756062019257189,
73
+ 0.009304860859811767,
74
+ 0.05616950282205181,
75
+ 0.1042282501882964,
76
+ 0.15490516155832307,
77
+ 0.21021078414249433,
78
+ 0.2735184749468475,
79
+ 0.35182078330381356,
80
+ 0.465787139096136,
81
+ 0.9999999999999982
82
+ ]
83
+ },
84
+ "translation": {
85
+ "phi_bins": [
86
+ -3.141592653589793,
87
+ -2.611427824867527,
88
+ -2.250204012654159,
89
+ -1.9664312602343461,
90
+ -1.727567317192397,
91
+ -1.5180333466123621,
92
+ -1.3290717520482633,
93
+ -1.1552219136523942,
94
+ -0.9928174267972283,
95
+ -0.8392525074770641,
96
+ -0.6925871222960145,
97
+ -0.5513178350935227,
98
+ -0.41423640072445,
99
+ -0.28033770999881874,
100
+ -0.14875675757685075,
101
+ -0.018723165750234833,
102
+ 0.11047361805186211,
103
+ 0.2395128839618976,
104
+ 0.3690681218889241,
105
+ 0.49983192073784344,
106
+ 0.6325427359682341,
107
+ 0.7680163128439619,
108
+ 0.9071854848022353,
109
+ 1.0511538919389105,
110
+ 1.2012725735857557,
111
+ 1.359254858953288,
112
+ 1.52735781547609,
113
+ 1.708685638209645,
114
+ 1.9077325684228925,
115
+ 2.1314415012063312,
116
+ 2.3915198815314898,
117
+ 2.710422326959981,
118
+ 3.141592653589793
119
+ ],
120
+ "r_bins": [
121
+ 0.0,
122
+ 0.24715317617636928,
123
+ 0.3738653185927623,
124
+ 0.4741546344271254,
125
+ 0.5660713758244397,
126
+ 0.6591763123588074,
127
+ 0.7640208367398835,
128
+ 0.905077308623254,
129
+ 1.7320508075688772
130
+ ],
131
+ "theta_bins": [
132
+ 0.0,
133
+ 0.9482227818534477,
134
+ 1.232949635587941,
135
+ 1.4288683204982662,
136
+ 1.586471048273713,
137
+ 1.7230822806307542,
138
+ 1.8470152323808435,
139
+ 1.9631023836372554,
140
+ 2.0745890527961355,
141
+ 2.1839605665055863,
142
+ 2.2933911513280534,
143
+ 2.405063409356251,
144
+ 2.521491080766048,
145
+ 2.6459805006534918,
146
+ 2.7834919014248793,
147
+ 2.942634872432456,
148
+ 3.141592653589793
149
+ ]
150
+ }
151
+ },
152
+ "intrinsic_config": {
153
+ "bridge_orig/1.0.0": {
154
+ "height": 480,
155
+ "intrinsic": [
156
+ [
157
+ 623.588,
158
+ 0,
159
+ 319.501
160
+ ],
161
+ [
162
+ 0,
163
+ 623.588,
164
+ 239.545
165
+ ],
166
+ [
167
+ 0,
168
+ 0,
169
+ 1
170
+ ]
171
+ ],
172
+ "width": 640
173
+ },
174
+ "default": {
175
+ "height": 480,
176
+ "intrinsic": [
177
+ [
178
+ 623.588,
179
+ 0,
180
+ 319.501
181
+ ],
182
+ [
183
+ 0,
184
+ 623.588,
185
+ 239.545
186
+ ],
187
+ [
188
+ 0,
189
+ 0,
190
+ 1
191
+ ]
192
+ ],
193
+ "width": 640
194
+ }
195
+ },
196
+ "min_sigma": 0.0,
197
+ "num_obs_steps": 1,
198
+ "obs_delta": 1,
199
+ "processor_class": "SpatialVLAProcessor",
200
+ "statistics": {
201
+ "bridge_orig/1.0.0": {
202
+ "action": {
203
+ "mask": [
204
+ true,
205
+ true,
206
+ true,
207
+ true,
208
+ true,
209
+ true,
210
+ false
211
+ ],
212
+ "max": [
213
+ 0.41691166162490845,
214
+ 0.25864794850349426,
215
+ 0.21218234300613403,
216
+ 3.122201919555664,
217
+ 1.8618112802505493,
218
+ 6.280478477478027,
219
+ 1.0
220
+ ],
221
+ "mean": [
222
+ 0.00023341862834058702,
223
+ 0.00013004240463487804,
224
+ -0.0001276263064937666,
225
+ -0.0001556586939841509,
226
+ -0.0004039350023958832,
227
+ 0.0002355838514631614,
228
+ 0.5764582753181458
229
+ ],
230
+ "min": [
231
+ -0.4007510244846344,
232
+ -0.13874775171279907,
233
+ -0.22553899884223938,
234
+ -3.2010786533355713,
235
+ -1.8618112802505493,
236
+ -6.279075622558594,
237
+ 0.0
238
+ ],
239
+ "q01": [
240
+ -0.02872725307941437,
241
+ -0.04170349963009357,
242
+ -0.026093858778476715,
243
+ -0.08092105075716972,
244
+ -0.09288699507713317,
245
+ -0.20718276381492615,
246
+ 0.0
247
+ ],
248
+ "q99": [
249
+ 0.028309678435325586,
250
+ 0.040855254605412394,
251
+ 0.040161586627364146,
252
+ 0.08192047759890528,
253
+ 0.07792850524187081,
254
+ 0.20382574498653397,
255
+ 1.0
256
+ ],
257
+ "std": [
258
+ 0.009765730239450932,
259
+ 0.013689513318240643,
260
+ 0.012667140923440456,
261
+ 0.02853446453809738,
262
+ 0.030637893825769424,
263
+ 0.07691765576601028,
264
+ 0.4973663091659546
265
+ ]
266
+ },
267
+ "num_trajectories": 60064,
268
+ "num_transitions": 2135463,
269
+ "proprio": {
270
+ "max": [
271
+ 0.0,
272
+ 0.0,
273
+ 0.0,
274
+ 0.0,
275
+ 0.0,
276
+ 0.0,
277
+ 0.0
278
+ ],
279
+ "mean": [
280
+ 0.0,
281
+ 0.0,
282
+ 0.0,
283
+ 0.0,
284
+ 0.0,
285
+ 0.0,
286
+ 0.0
287
+ ],
288
+ "min": [
289
+ 0.0,
290
+ 0.0,
291
+ 0.0,
292
+ 0.0,
293
+ 0.0,
294
+ 0.0,
295
+ 0.0
296
+ ],
297
+ "q01": [
298
+ 0.0,
299
+ 0.0,
300
+ 0.0,
301
+ 0.0,
302
+ 0.0,
303
+ 0.0,
304
+ 0.0
305
+ ],
306
+ "q99": [
307
+ 0.0,
308
+ 0.0,
309
+ 0.0,
310
+ 0.0,
311
+ 0.0,
312
+ 0.0,
313
+ 0.0
314
+ ],
315
+ "std": [
316
+ 0.0,
317
+ 0.0,
318
+ 0.0,
319
+ 0.0,
320
+ 0.0,
321
+ 0.0,
322
+ 0.0
323
+ ]
324
+ }
325
+ }
326
+ }
327
+ }
simplerenv.md ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
2
+ |:---------------------------------------------------|:--------------------|:----------------|:----------|:-------|:-------|:----------|:-----------|:------------|:--------|:--------|
3
+ | coke_can/matching_avg | nan | 0.857 | 0.71 | 0.567 | 0.787 | 0.17 | nan | 0.027 | 0.163 | 0.727 |
4
+ | coke_can/variant_avg | nan | 0.898 | 0.813 | 0.49 | 0.823 | 0.006 | nan | 0.022 | 0.545 | nan |
5
+ | coke_can/matching/horizontal | nan | 0.96 | 0.86 | 0.82 | 0.74 | 0.21 | nan | 0.05 | 0.27 | 0.85 |
6
+ | coke_can/matching/vertical | nan | 0.9 | 0.79 | 0.33 | 0.74 | 0.21 | nan | 0.0 | 0.03 | 0.43 |
7
+ | coke_can/matching/standing | nan | 0.71 | 0.48 | 0.55 | 0.88 | 0.09 | nan | 0.03 | 0.19 | 0.9 |
8
+ | coke_can/variant/horizontal | nan | 0.969 | 0.92 | 0.569 | 0.822 | 0.005 | nan | 0.022 | 0.711 | nan |
9
+ | coke_can/variant/vertical | nan | 0.76 | 0.704 | 0.204 | 0.754 | 0.0 | nan | 0.013 | 0.271 | nan |
10
+ | coke_can/variant/standing | nan | 0.964 | 0.813 | 0.698 | 0.893 | 0.013 | nan | 0.031 | 0.653 | nan |
11
+ | move_near/variant | nan | 0.5 | 0.446 | 0.323 | 0.792 | 0.031 | nan | 0.04 | 0.477 | nan |
12
+ | move_near/matching | nan | 0.442 | 0.354 | 0.317 | 0.779 | 0.042 | nan | 0.05 | 0.462 | 0.663 |
13
+ | drawer/matching_avg | nan | 0.73 | 0.565 | 0.597 | 0.25 | 0.227 | nan | 0.139 | 0.356 | 0.268 |
14
+ | drawer/variant_avg | nan | 0.323 | 0.267 | 0.294 | 0.353 | 0.011 | nan | 0.069 | 0.177 | nan |
15
+ | drawer/matching/open | nan | 0.601 | 0.463 | 0.296 | 0.157 | 0.009 | nan | 0.0 | 0.194 | 0.287 |
16
+ | drawer/matching/close | nan | 0.861 | 0.667 | 0.891 | 0.343 | 0.444 | nan | 0.278 | 0.518 | 0.25 |
17
+ | drawer/variant/open | nan | 0.27 | 0.212 | 0.069 | 0.333 | 0.0 | nan | 0.005 | 0.158 | nan |
18
+ | drawer/variant/close | nan | 0.376 | 0.323 | 0.519 | 0.372 | 0.021 | nan | 0.132 | 0.195 | nan |
19
+ | put_spoon_on_tablecloth/matching_partial | 0.20833333333333334 | nan | nan | 0.167 | nan | 0.347 | 0.778 | nan | 0.041 | 0.375 |
20
+ | put_spoon_on_tablecloth/matching_entire | 0.16666666666666666 | nan | nan | 0.0 | nan | 0.125 | 0.472 | nan | 0.0 | 0.208 |
21
+ | put_carrot_on_plate/matching_partial | 0.2916666666666667 | nan | nan | 0.208 | nan | 0.528 | 0.278 | nan | 0.333 | 0.333 |
22
+ | put_carrot_on_plate/matching_entire | 0.25 | nan | nan | 0.042 | nan | 0.083 | 0.097 | nan | 0.0 | 0.25 |
23
+ | stack_green_block_on_yellow_block/matching_partial | 0.625 | nan | nan | 0.083 | nan | 0.319 | 0.403 | nan | 0.125 | 0.083 |
24
+ | stack_green_block_on_yellow_block/matching_entire | 0.2916666666666667 | nan | nan | 0.0 | nan | 0.0 | 0.042 | nan | 0.0 | 0.083 |
25
+ | put_eggplant_in_basket/matching_partial | 1.0 | nan | nan | 0.0 | nan | 0.667 | 0.875 | nan | 0.083 | 0.0 |
26
+ | put_eggplant_in_basket/matching_entire | 1.0 | nan | nan | 0.0 | nan | 0.431 | 0.569 | nan | 0.041 | 0.0 |
special_tokens_map.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<image>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "bos_token": {
12
+ "content": "<bos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "eos_token": {
19
+ "content": "<eos>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<pad>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "unk_token": {
33
+ "content": "<unk>",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ }
39
+ }
test_huggingface.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ from pathlib import Path
4
+ import torch
5
+ from PIL import Image
6
+ from transformers import AutoModel, AutoProcessor
7
+
8
+ parser = argparse.ArgumentParser("Huggingface AutoModel Tesing")
9
+ parser.add_argument("--model_name_or_path", default=".", help="pretrained model name or path.")
10
+ parser.add_argument("--num_images", type=int, default=1, help="num_images for testing.")
11
+
12
+ args = parser.parse_args()
13
+ if __name__ == "__main__":
14
+ model_name_or_path = Path(args.model_name_or_path)
15
+ processor = AutoProcessor.from_pretrained(args.model_name_or_path, trust_remote_code=True)
16
+ print(processor.statistics)
17
+
18
+ model = AutoModel.from_pretrained(args.model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16).eval().cuda()
19
+
20
+ image = Image.open("example.png").convert("RGB")
21
+ images = [image] * args.num_images
22
+ prompt = "What action should the robot take to pick the cup?"
23
+ inputs = processor(images=images, text=prompt, unnorm_key="bridge_orig/1.0.0", return_tensors="pt")
24
+ print(inputs)
25
+
26
+ generation_outputs = model.predict_action(inputs)
27
+ print(generation_outputs, processor.batch_decode(generation_outputs))
28
+
29
+ actions = processor.decode_actions(generation_outputs, unnorm_key="bridge_orig/1.0.0")
30
+ print(actions)
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2523a63c898ebf0a32c7282a2e459ef2c950a846c5f3172305089e4149b6b6c3
3
+ size 36157680
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff