|
from transformers import Pipeline |
|
from tensorflow.keras.models import load_model |
|
from tensorflow.keras.preprocessing.text import tokenizer_from_json |
|
from tensorflow.keras.preprocessing.sequence import pad_sequences |
|
import numpy as np |
|
import tensorflow as tf |
|
import json |
|
|
|
class NewsClassifierPipeline(Pipeline): |
|
def __init__(self): |
|
super().__init__() |
|
self.model = load_model('./news_classifier.h5') |
|
with open('./tokenizer.json', 'r') as f: |
|
tokenizer_data = json.load(f) |
|
self.tokenizer = tokenizer_from_json(tokenizer_data) |
|
|
|
def preprocess(self, text): |
|
sequence = self.tokenizer.texts_to_sequences([text]) |
|
padded = pad_sequences(sequence, maxlen=128) |
|
return padded |
|
|
|
def _forward(self, inputs): |
|
predictions = self.model.predict(inputs) |
|
scores = tf.nn.softmax(predictions, axis=1).numpy() |
|
label = np.argmax(scores, axis=1)[0] |
|
return [{"label": "foxnews" if label == 0 else "nbc", "score": float(scores[0][label])}] |
|
|
|
def postprocess(self, model_outputs): |
|
return model_outputs |
|
|