|
from transformers import Pipeline |
|
from tensorflow.keras.models import load_model |
|
from tensorflow.keras.preprocessing.text import tokenizer_from_json |
|
from tensorflow.keras.preprocessing.sequence import pad_sequences |
|
import numpy as np |
|
import json |
|
|
|
class NewsClassifierPipeline(Pipeline): |
|
def __init__(self): |
|
super().__init__() |
|
self.model = load_model('./news_classifier.h5') |
|
with open('./tokenizer.json', 'r') as f: |
|
tokenizer_data = json.load(f) |
|
self.tokenizer = tokenizer_from_json(tokenizer_data) |
|
|
|
def preprocess(self, inputs): |
|
sequences = self.tokenizer.texts_to_sequences([inputs]) |
|
return pad_sequences(sequences, maxlen=128) |
|
|
|
def _forward(self, inputs): |
|
processed = self.preprocess(inputs) |
|
predictions = self.model.predict(processed) |
|
return [{"label": "foxnews" if predictions[0][0] > 0.5 else "nbc", "score": float(predictions[0][0])}] |
|
|
|
def postprocess(self, model_outputs): |
|
return model_outputs |
|
|