JingyaoLi commited on
Commit
f4a4b5f
·
verified ·
1 Parent(s): daacca0

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +16 -18
README.md CHANGED
@@ -7,28 +7,24 @@ tags:
7
  - full
8
  - generated_from_trainer
9
  model-index:
10
- - name: llama3.2_1b_instruct_pkl_1200k_e1_warmup0.1_cosinelr1e-6_seed42_maxl2048_a0.9_t1.0_logp5_freqt_0_b1.0_r1.0
11
  results: []
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
 
 
 
 
 
 
16
 
17
- # llama3.2_1b_instruct_pkl_1200k_e1_warmup0.1_cosinelr1e-6_seed42_maxl2048_a0.9_t1.0_logp5_freqt_0_b1.0_r1.0
18
 
19
- This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the OpenMathInstruct-2-1M and the metamath_gsm8k datasets.
20
-
21
- ## Model description
22
-
23
- More information needed
24
-
25
- ## Intended uses & limitations
26
-
27
- More information needed
28
-
29
- ## Training and evaluation data
30
-
31
- More information needed
32
 
33
  ## Training procedure
34
 
@@ -50,7 +46,9 @@ The following hyperparameters were used during training:
50
  - num_epochs: 1
51
 
52
  ### Training results
53
-
 
 
54
 
55
 
56
  ### Framework versions
 
7
  - full
8
  - generated_from_trainer
9
  model-index:
10
+ - name: ScienceLLaMA-1B
11
  results: []
12
  ---
13
 
14
+ # ScienceLLaMA-3B
15
+ <p align="center">
16
+ • 🤗 <a href="https://huggingface.co/datasets/JingyaoLi/Science-Logits-1.2M" target="_blank">Data </a>
17
+ • 🤗 <a href="https://huggingface.co/JingyaoLi/ScienceLLaMA-3b" target="_blank">ScienceLLaMA-3B </a>
18
+ • 🤗 <a href="https://huggingface.co/JingyaoLi/ScienceLLaMA-1b" target="_blank">ScienceLLaMA-1B </a>
19
+ • 🐱 <a href="Logits-based Finetuning" target="_blank">Code</a>
20
+ • 📃 Paper (TO be released) <br>
21
+ </p>
22
 
23
+ This model is a fine-tuned with **Logits-Based Finetuning** on the [JingyaoLi/Science-Logits-1.2M](https://huggingface.co/datasets/JingyaoLi/Science-Logits-1.2M), which integrates the strengths of supervised learning and knowledge distillation by combining teacher logits with ground truth labels. This preserves both correctness and linguistic diversity.
24
 
25
+ <div style="text-align: center;">
26
+ <img src="./images/example.png" alt="example" />
27
+ </div>
 
 
 
 
 
 
 
 
 
 
28
 
29
  ## Training procedure
30
 
 
46
  - num_epochs: 1
47
 
48
  ### Training results
49
+ <div style="text-align: center;">
50
+ <img src="./images/performance.png" alt="performance" />
51
+ </div>
52
 
53
 
54
  ### Framework versions