KennethTM commited on
Commit
f2e79b5
·
1 Parent(s): dc8b8f7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -1
README.md CHANGED
@@ -4,4 +4,42 @@ language:
4
  pipeline_tag: text-generation
5
  widget:
6
  - text: "### Bruger:\nAnders\n\n### Anmeldelse:\nUmuligt at komme igennem på telefonen.\n\n### Svar:\nKære Anders\n"
7
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  pipeline_tag: text-generation
5
  widget:
6
  - text: "### Bruger:\nAnders\n\n### Anmeldelse:\nUmuligt at komme igennem på telefonen.\n\n### Svar:\nKære Anders\n"
7
+ ---
8
+
9
+ # What is this?
10
+
11
+ A fine-tuned GPT-2 model (small version, 124 M parameters) for generating responses to customer reviews in Danish.
12
+
13
+ # How to use
14
+
15
+ The model is based on the [gpt2-small-danish model](https://huggingface.co/KennethTM/gpt2-small-danish). Then supervised fine-tuning is applied to adapt the model to generate responses to customer reviews in Danish. A prompting template is applied to the examples used to train (see the example below).
16
+
17
+ Test the model using the pipeline from the [🤗 Transformers](https://github.com/huggingface/transformers) library:
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ generator = pipeline("text-generation", model = "KennethTM/gpt2-small-danish-review-response")
23
+
24
+ def prompt_template(user, review):
25
+ return f"### Bruger:\n{user}\n\n### Anmeldelse:\n{review}\n\n### Svar:\nKære {user}\n"
26
+
27
+ prompt = prompt_template(user = "Anders", review = "Umuligt at komme igennem på telefonen.")
28
+
29
+ text = generator(prompt)
30
+
31
+ print(text[0]["generated_text"])
32
+ ```
33
+
34
+ Or load it using the Auto* classes:
35
+
36
+ ```python
37
+ from transformers import AutoTokenizer, AutoModelForCausalLM
38
+
39
+ tokenizer = AutoTokenizer.from_pretrained("KennethTM/gpt2-small-danish-review-response")
40
+ model = AutoModelForCausalLM.from_pretrained("KennethTM/gpt2-small-danish-review-response")
41
+ ```
42
+
43
+ # Notes
44
+
45
+ The model may get the sentiment of the review wrong resulting in a mismatch between the review and response. The model would probably benefit from sentiment tuning.