File size: 1,999 Bytes
a93fdc6 9441809 af5371e ac60cf4 af5371e 9441809 af5371e 9441809 af5371e 695eb6d af5371e 695eb6d af5371e a93fdc6 c0dd6d9 af5371e c72057b 9441809 695eb6d c72057b af5371e a93fdc6 fe1296e a93fdc6 fe1296e a93fdc6 af5371e fe1296e c437e3d fe1296e d0af0bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: mlx
license: apache-2.0
language:
- km
pipeline_tag: automatic-speech-recognition
datasets:
- seanghay/km-speech-corpus
- seanghay/khmer_mwpt_speech
tags:
- Khmer
- mlx
base_model: openai-whisper-tiny
model-index:
- name: whisper-tiny-khmer-mlx-fp32 by Kimang KHUN
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
name: test split of "km_kh" in google/fleurs
type: google/fleurs
metrics:
- type: wer
value: 73.5%
name: test
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
name: train split of "SLR42" in openslr/openslr
type: openslr/openslr
metrics:
- type: wer
value: 56.4%
name: test
---
# whisper-tiny-khmer-mlx-fp32
This model was converted to MLX format from [`openai-whisper-tiny`](https://github.com/openai/whisper), then fine-tined to Khmer language using two datasets:
- [seanghay/khmer_mpwt_speech](https://huggingface.com/datasets/seanghay/khmer_mpwt_speech)
- [seanghay/km-speech-corpus](https://huggingface.com/datasets/seanghay/km-speech-corpus)
It achieves the following __word error rate__ (`wer`) on 2 popular datasets:
- 73.5% on `test` split of [google/fleurs](https://huggingface.co/datasets/google/fleurs) `km-kh`
- 56.4% on `train` split of [openslr/openslr](https://huggingface.co/datasets/openslr/openslr) `SLR42`
__NOTE__ MLX format is usable for M-chip series of Apple.
## Use with mlx
```bash
pip install mlx-whisper
```
Write a python script, `example.py`, as the following
```python
import mlx_whisper
result = mlx_whisper.transcribe(
SPEECH_FILE_NAME,
path_or_hf_repo="Kimang18/whisper-tiny-khmer-mlx-fp32",
fp16=False
)
print(result['text'])
```
Then execute this script `example.py` to see the result.
You can also use command line in terminal
```bash
mlx_whisper --model Kimang18/whisper-tiny-khmer-mlx-fp32 --task transcribe SPEECH_FILE_NAME --fp16 False
```
|