import ast import os import tarfile from ast import AsyncFunctionDef, ClassDef, FunctionDef, Module from io import BytesIO import numpy as np import requests import torch from transformers import Pipeline def extract_code_and_docs(text: str): """Extract code and documentation from a Python file. Args: text (str): Source code of a Python file Returns: tuple: A tuple of two sets, the first is the code set, and the second is the docs set, each set contains unique code string or docstring, respectively. """ root = ast.parse(text) def_nodes = [ node for node in ast.walk(root) if isinstance(node, (AsyncFunctionDef, FunctionDef, ClassDef, Module)) ] code_set = set() docs_set = set() for node in def_nodes: docs = ast.get_docstring(node) node_without_docs = node if docs is not None: docs_set.add(docs) # Remove docstrings from the node node_without_docs.body = node_without_docs.body[1:] if isinstance(node, (AsyncFunctionDef, FunctionDef)): code_set.add(ast.unparse(node_without_docs)) return code_set, docs_set def get_topics(repo_name, headers=None): api_url = f"https://api.github.com/repos/{repo_name}" print(f"[+] Getting topics for {repo_name}") try: response = requests.get(api_url, headers=headers) response.raise_for_status() except requests.exceptions.HTTPError as e: print(f"[-] Failed to get topics for {repo_name}: {e}") return [] metadata = response.json() topics = metadata.get("topics", []) if topics: print(f"[+] Topics found for {repo_name}: {topics}") return topics def download_and_extract(repos, headers=None): extracted_info = {} for repo_name in repos: extracted_info[repo_name] = { "funcs": set(), "docs": set(), "topics": get_topics(repo_name, headers=headers), } download_url = f"https://api.github.com/repos/{repo_name}/tarball" print(f"[+] Extracting functions and docstrings from {repo_name}") try: response = requests.get(download_url, headers=headers, stream=True) response.raise_for_status() except requests.exceptions.HTTPError as e: print(f"[-] Failed to download {repo_name}: {e}") continue repo_bytes = BytesIO(response.raw.read()) print(f"[+] Extracting {repo_name} info") with tarfile.open(fileobj=repo_bytes) as tar: for member in tar.getmembers(): if member.isfile() and member.name.endswith(".py"): file_content = tar.extractfile(member).read().decode("utf-8") try: code_set, docs_set = extract_code_and_docs(file_content) except SyntaxError as e: print(f"[-] SyntaxError in {member.name}: {e}, skipping") continue extracted_info[repo_name]["funcs"].update(code_set) extracted_info[repo_name]["docs"].update(docs_set) return extracted_info class RepoEmbeddingPipeline(Pipeline): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.API_HEADERS = {"Accept": "application/vnd.github+json"} if os.environ.get("GITHUB_TOKEN") is None: print( "[!] Consider setting GITHUB_TOKEN environment variable to avoid hitting rate limits\n" "For more info, see:" "https://docs.github.com/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token" ) else: self.API_HEADERS["Authorization"] = f"Bearer {os.environ['GITHUB_TOKEN']}" print("[+] Using GITHUB_TOKEN for authentication") def _sanitize_parameters(self, **kwargs): _forward_kwargs = {} if "max_length" in kwargs: _forward_kwargs["max_length"] = kwargs["max_length"] return {}, _forward_kwargs, {} def preprocess(self, inputs): if isinstance(inputs, str): inputs = (inputs,) extracted_infos = download_and_extract(inputs, headers=self.API_HEADERS) return extracted_infos def encode(self, text, max_length): """ Generates an embedding for a input string. Parameters: * `text`- The input string to be embedded. * `max_length`- The maximum total source sequence length after tokenization. """ assert max_length < 1024 tokenizer = self.tokenizer tokens = ( [tokenizer.cls_token, "", tokenizer.sep_token] + tokenizer.tokenize(text)[: max_length - 4] + [tokenizer.sep_token] ) tokens_id = tokenizer.convert_tokens_to_ids(tokens) source_ids = torch.tensor([tokens_id]).to(self.device) token_embeddings = self.model(source_ids)[0] sentence_embeddings = token_embeddings.mean(dim=1) return sentence_embeddings def _forward(self, extracted_infos, max_length=512): repo_dataset = {} for repo_name, repo_info in extracted_infos.items(): entry = {"topics": repo_info.get("topics")} print(f"[+] Generating embeddings for {repo_name}") if entry.get("code_embeddings") is None: code_embeddings = [ [func, self.encode(func, max_length).squeeze().tolist()] for func in repo_info["funcs"] ] entry["code_embeddings"] = code_embeddings entry["mean_code_embedding"] = ( np.mean([x[1] for x in code_embeddings], axis=0).tolist() if code_embeddings else None ) if entry.get("doc_embeddings") is None: doc_embeddings = [ [doc, self.encode(doc, max_length).squeeze().tolist()] for doc in repo_info["docs"] ] entry["doc_embeddings"] = doc_embeddings entry["mean_doc_embedding"] = ( np.mean([x[1] for x in doc_embeddings], axis=0).tolist() if doc_embeddings else None ) repo_dataset[repo_name] = entry return repo_dataset def postprocess(self, repo_dataset): return repo_dataset