--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: KoELECTRA-small-v3-modu-ner results: [] language: - ko pipeline_tag: token-classification examples: widget: - text: "서울역으로 안내해줘" example_title: "Sentence_1" - text: "에어컨 온도를 3도 올려줘" example_title: "Sentence_2" --- # KoELECTRA-small-v3-modu-ner This model is a fine-tuned version of [monologg/koelectra-small-v3-discriminator](https://huggingface.co/monologg/koelectra-small-v3-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1354 - Precision: 0.8084 - Recall: 0.8311 - F1: 0.8196 - Accuracy: 0.9599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 7575 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 3788 | 0.2991 | 0.6481 | 0.6373 | 0.6426 | 0.9229 | | No log | 2.0 | 7576 | 0.1904 | 0.7479 | 0.7418 | 0.7448 | 0.9438 | | No log | 3.0 | 11364 | 0.1620 | 0.7577 | 0.7940 | 0.7754 | 0.9502 | | No log | 4.0 | 15152 | 0.1505 | 0.7890 | 0.7982 | 0.7936 | 0.9544 | | No log | 5.0 | 18940 | 0.1417 | 0.7905 | 0.8163 | 0.8032 | 0.9563 | | No log | 6.0 | 22728 | 0.1392 | 0.7914 | 0.8250 | 0.8079 | 0.9572 | | No log | 7.0 | 26516 | 0.1363 | 0.8060 | 0.8231 | 0.8144 | 0.9589 | | No log | 8.0 | 30304 | 0.1367 | 0.8035 | 0.8294 | 0.8162 | 0.9592 | | No log | 9.0 | 34092 | 0.1349 | 0.8085 | 0.8296 | 0.8189 | 0.9597 | | 0.2299 | 10.0 | 37880 | 0.1354 | 0.8084 | 0.8311 | 0.8196 | 0.9599 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2