--- datasets: - pubmed language: - en tags: - BERT --- # Model Card for Model ID base_model : google-bert/bert-large-uncased hidden_size : 1024 max_position_embeddings : 512 num_attention_heads : 16 num_hidden_layers : 24 vocab_size : 30522 # Basic usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification import numpy as np # match tag id2tag = {0:'O', 1:'B_MT', 2:'I_MT'} # load model & tokenizer MODEL_NAME = 'MDDDDR/bert_large_uncased_NER' model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) # prepare input text = 'mental disorder can also contribute to the development of diabetes through various mechanism including increased stress, poor self care behavior, and adverse effect on glucose metabolism.' tokenized = tokenizer(text, return_tensors='pt') # forward pass output = model(**tokenized) # result logits = output['logits'] logits = logits.detach().cpu().numpy() # remove start & end tag pred = [p for p in np.argmax(logits, axis=2)][0][1:-1] # Check pred for txt, pred in zip(tokenizer.tokenize(text), pred): print(txt, id2tag[pred]) # mental B_MT # disorder B_MT ```