File size: 4,111 Bytes
7836cdd 08e6e8e 755d958 c71862d 7836cdd c71862d 1c74979 c71862d 1c74979 c71862d f50e653 c71862d f50e653 c71862d f50e653 c71862d b32413e c71862d 7836cdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: other
datasets:
- allenai/c4
language:
- en
metrics:
- perplexity
- accuracy
tags:
- acip
- pytorch
base_model:
- jeffwan/llama-7b-hf
pipeline_tag: text-generation
library_name: transformers
---
<div align="center">
<img width="30%" alt="logo" src="https://imgur.com/A0MCHPq.png">
</div>
<div align="center">
<a href="https://github.com/merantix-momentum/acip"><img src="https://img.shields.io/badge/GitHub-%23121011.svg?logo=github&logoColor=white.svg" alt="github" style="display: inline-block; vertical-align: middle;"></a>
<a href="https://arxiv.org/abs/2502.01717"><img src="https://img.shields.io/badge/arXiv-2502.01717-b31b1b.svg" alt="arxiv" style="display: inline-block; vertical-align: middle;"></a>
<a href="https://acip.merantix-momentum.com/"><img alt="website" src="https://img.shields.io/website/https/acip.merantix-momentum.com.svg?down_color=red&down_message=offline&up_message=online" style="display: inline-block; vertical-align: middle;"></a>
</div>
<h2 align="center">
<p> [
<a href="https://github.com/merantix-momentum/acip">π€ GitHub</a> |
<a href="https://arxiv.org/abs/2502.01717">π Paper</a> |
<a href="https://acip.merantix-momentum.com/">π Website</a>
]
</p>
</h2>
<h1 align="center">
<p>ACIP applied to jeffwan/llama-7b-hf</p>
</h1>
This model repository is part of the ACIP Project and provides a compressible version of [`jeffwan/llama-7b-hf`](https://huggingface.co/jeffwan/llama-7b-hf). For more details, please visit our [code repo](https://github.com/merantix-momentum/acip).
# Quick Start
Just load the ACIP model via `from_pretrained`:
```python
from transformers import AutoModel
model = AutoModel.from_pretrained("MerantixMomentum/acip_llama1_7b", trust_remote_code=True)
```
This will download and create a fully parameterized ACIP model that can be pruned to any compression rate you wish.
For example,
```python
model.prune_model_by_score(size_ratio=0.4)
```
will prune `model` to 40% if its original size measured in number of parameters, i.e., 60% compression rate.
A unique feature of ACIP is that this operation is revertible in the sense that you can rerun `model.prune_model_by_score` as often as you like to evaluate your model at different sizes. Finally, you can "commit" to a certain ratio and run
```python
model.compress()
```
which will discard all pruned mask values of compressible linear layers.
Now the model is actually compressed and you should observe a significant decrease of memory usage (this step is not revertible without reloading the ACIP model).
If you like, you can also run
```python
model.quantize()
```
to save even more memory (we have only tested 4bit quantization with `bitsandbytes`, but you could also customize this).
**π That's it! You can now use your compressed model for inference or fine-tuning as any other Causal Language Model from π€ transformers.**
**Note**: The parameter `size_ratio` ranges from 1.0 to 0.0, indicating the model size after compression. For example, 0.4 means that the model has only 40% of the original number of parameters and 1.0 means no compression at all. Alternatively, you can also set `compression_rate` in `prune_model_by_score`, which is equivalent to `size_ratio = 1.0 - compression_rate`.
# Dependencies
To run an ACIP model from our hub, you only need minimal dependencies, namely `torch`, `transformers`, `peft`, and optionally, `bitsandbytes` in case you want to quantize your model.
See [requirements.txt](requirements.txt) for pip-installable dependencies with exact version pins (newer version should work as well).
# License
The license is inherited from the base model jeffwan/llama-7b-hf.
# Citation
When using or referring to this model, please cite our [paper](https://arxiv.org/abs/2502.01717):
```bibtex
@article{mxm2025acip,
title={Choose Your Model Size: Any Compression by a Single Gradient Descent},
author={M. Genzel, P. Putzky, P. Zhao, S. Schulze, M. Mollenhauer, R. Seidel, S. Dietzel, T. Wollmann},
year={2025},
journal={Preprint arXiv:2502.01717}
}
```
|