File size: 9,863 Bytes
07def9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
# Separate file which contains the functions to convert predictions to hard
# labels and calculate the IoU score using the settings of our best model in
# SemEval 2025 Task 3.
import argparse
import collections
from scipy.stats import spearmanr
import jsonlines
import numpy as np
from datasets import load_dataset
from tqdm.auto import tqdm
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, TrainingArguments, Trainer
def add_answers_column(example):
starts, texts = [], []
for hard_label in example["hard_labels"]:
starts.append(hard_label[0])
texts.append(example["context"][hard_label[0]:hard_label[1]])
example["answers"] = {"answer_start": starts, "text": texts}
return example
def to_dataset(file_path):
mushroom = load_dataset("json", data_files=file_path)["train"]
mushroom = mushroom.rename_column("model_output_text", "context")
mushroom = mushroom.rename_column("model_input", "question")
if "hard_labels" in mushroom.column_names:
mushroom = mushroom.map(add_answers_column)
else:
print("No hard labels found in the evaluation data: only generating predictions.")
return mushroom
def preprocess_examples(examples, tokenizer):
questions = [q.strip() for q in examples["question"]]
inputs = tokenizer(
questions,
examples["context"],
max_length=384,
truncation="only_second",
stride=128,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length",
)
sample_map = inputs.pop("overflow_to_sample_mapping")
example_ids = []
for i in range(len(inputs["input_ids"])):
sample_idx = sample_map[i]
example_ids.append(examples["id"][sample_idx])
sequence_ids = inputs.sequence_ids(i)
offset = inputs["offset_mapping"][i]
inputs["offset_mapping"][i] = [
o if sequence_ids[k] == 1 else None for k, o in enumerate(offset)
]
inputs["example_id"] = example_ids
return inputs
def score_iou(ref_dict, pred_dict):
"""
Computes intersection-over-union between reference and predicted hard
labels, for a single datapoint.
Arguments:
ref_dict (dict): a gold reference datapoint,
pred_dict (dict): a model's prediction
Returns:
int: The IoU, or 1.0 if neither the reference nor the prediction contain hallucinations
"""
# ensure the prediction is correctly matched to its reference
assert ref_dict['id'] == pred_dict['id']
# convert annotations to sets of indices
ref_indices = {idx for span in ref_dict['hard_labels'] for idx in range(*span)}
pred_indices = {idx for span in pred_dict['hard_labels'] for idx in range(*span)}
# avoid division by zero
if not pred_indices and not ref_indices: return 1.
# otherwise compute & return IoU
return len(ref_indices & pred_indices) / len(ref_indices | pred_indices)
def score_cor(ref_dict, pred_dict):
"""computes Spearman correlation between predicted and reference soft labels, for a single datapoint.
inputs:
- ref_dict: a gold reference datapoint,
- pred_dict: a model's prediction
returns:
the Spearman correlation, or a binarized exact match (0.0 or 1.0) if the reference or prediction contains no variation
"""
# ensure the prediction is correctly matched to its reference
assert ref_dict['id'] == pred_dict['id']
# convert annotations to vectors of observations
ref_vec = [0.] * ref_dict['text_len']
pred_vec = [0.] * ref_dict['text_len']
for span in ref_dict['soft_labels']:
for idx in range(span['start'], span['end']):
ref_vec[idx] = span['prob']
for span in pred_dict['soft_labels']:
for idx in range(span['start'], span['end']):
pred_vec[idx] = span['prob']
# constant series (i.e., no hallucination) => cor is undef
if len({round(flt, 8) for flt in pred_vec}) == 1 or len({round(flt, 8) for flt in ref_vec}) == 1 :
return float(len({round(flt, 8) for flt in ref_vec}) == len({round(flt, 8) for flt in pred_vec}))
# otherwise compute Spearman's rho
return spearmanr(ref_vec, pred_vec).correlation
def infer_soft_labels(hard_labels):
"""reformat hard labels into soft labels with prob 1"""
return [
{
'start': start,
'end': end,
'prob': 1.0,
}
for start, end in hard_labels
]
def find_possible_spans(answers, example):
"""
Creates and filters possible hallucination spans.
Arguments:
answers (list): List containing dictionaries with spans as text and
logit scores.
example: The instance which is being predicted. The context is used to map the predicted text to the start
and end indexes of the target context.
Returns:
list: List with lists of hard labels.
"""
best_answer = max(answers, key=lambda x: x["logit_score"])
threshold = best_answer["logit_score"] * 0.8
hard_labels = []
for answer in answers:
if answer["logit_score"] > threshold:
start_index = example["context"].index(answer["text"])
end_index = start_index + len(answer["text"])
hard_labels.append([start_index, end_index])
soft_labels = infer_soft_labels(hard_labels)
return hard_labels, soft_labels
def compute_metrics(start_logits, end_logits, features, examples, predictions_file):
"""
Function to process predictions, create spans and if possible,
calculates IoU
Arguments:
args (ArgumentParser): Arguments supplied by user.
start_logits (list): Logits of all start positions.
end_logits (list): Logits of all end positions.
features (Dataset): Dataset containing features of questions and context.
examples (Dataset): Dataset containing examples with hard labels.
Returns:
None
"""
example_to_features = collections.defaultdict(list)
for idx, feature in enumerate(features):
example_to_features[feature["example_id"]].append(idx)
predicted_answers = []
for example in tqdm(examples):
example_id = example["id"]
context = example["context"]
answers = []
# Loop through all features associated with that example
for feature_index in example_to_features[example_id]:
start_logit = start_logits[feature_index]
end_logit = end_logits[feature_index]
offsets = features[feature_index]["offset_mapping"]
start_indexes = np.argsort(start_logit)[-1: -20 - 1: -1].tolist()
end_indexes = np.argsort(end_logit)[-1: -20 - 1: -1].tolist()
for start_index in start_indexes:
for end_index in end_indexes:
# Skip answers that are not fully in the context
if offsets[start_index] is None or offsets[end_index] is None:
continue
# Skip answers with a length that is either < 0 or > max_answer_length
if (
end_index < start_index
or end_index - start_index + 1 > 30
):
continue
answer = {
"text": context[offsets[start_index][0]: offsets[end_index][1]],
"logit_score": start_logit[start_index] + end_logit[end_index],
}
answers.append(answer)
# Select the answer with the best score
if len(answers) > 0:
hard_labels, soft_labels = find_possible_spans(answers, example)
predicted_answers.append(
{"id": example_id, "hard_labels": hard_labels, "soft_labels": soft_labels}
)
else:
predicted_answers.append({"id": example_id, "hard_labels": [], "soft_labels": []})
with jsonlines.open(predictions_file, mode="w") as writer:
writer.write_all(predicted_answers)
if "answers" in examples.column_names:
true_answers = [{"id": ex["id"], "hard_labels": ex["hard_labels"], "soft_labels": ex["soft_labels"],
"text_len": len(ex["context"])} for ex in examples]
ious = np.array([score_iou(r, d) for r, d in zip(true_answers, predicted_answers)])
cors = np.array([score_cor(r, d) for r, d in zip(true_answers, predicted_answers)])
print(f"IOU: {ious.mean():.8f}, COR: {cors.mean():.8f}")
else:
print("Evaluation data contained no answers. No scores to show.")
def main(model_path, evaluation_file_path, output_file):
model = AutoModelForQuestionAnswering.from_pretrained(
model_path
)
tokenizer = AutoTokenizer.from_pretrained(
model_path
)
# Initialize Trainer
args = TrainingArguments(
output_dir="output_dir",
per_device_eval_batch_size=16,
report_to="none"
)
model = Trainer(
model=model,
args=args,
tokenizer=tokenizer,
)
mushroom_dataset = to_dataset(evaluation_file_path)
features = mushroom_dataset.map(
preprocess_examples,
batched=True,
remove_columns=mushroom_dataset.column_names,
fn_kwargs={"tokenizer": tokenizer}
)
predictions, _, _ = model.predict(features)
start_logits, end_logits = predictions
compute_metrics(start_logits, end_logits, features, mushroom_dataset, output_file)
if __name__ == '__main__':
p = argparse.ArgumentParser()
p.add_argument('model_name', type=str)
p.add_argument('evaluation_file_path', type=str)
p.add_argument('output_file', type=str)
a = p.parse_args()
main(a.model_name, a.evaluation_file_path, a.output_file)
|