Initial commit. LLAMA
Browse files- gemma-2b.q8_0.gguf +3 -0
- handler.py +47 -0
- requirements.txt +1 -0
gemma-2b.q8_0.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec68b50d23469882716782da8b680402246356c3f984e9a3b9bcc5bc15273140
|
3 |
+
size 2669351840
|
handler.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from llama_cpp import Llama
|
3 |
+
|
4 |
+
class EndpointHandler():
|
5 |
+
def __init__(self, path="", vision_model="obsidian3b"):
|
6 |
+
self.model = Llama("gemma-2b.q8_0.gguf")
|
7 |
+
|
8 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
9 |
+
"""
|
10 |
+
data args:
|
11 |
+
inputs (:obj: `str`)
|
12 |
+
image (:obj: `Image`)
|
13 |
+
Return:
|
14 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
15 |
+
"""
|
16 |
+
# get inputs
|
17 |
+
inputs = data.pop("inputs", "")
|
18 |
+
#image = data.pop("image", None)
|
19 |
+
|
20 |
+
res = self.model(inputs, temperature=0.33, top_p=0.85, top_k=42)
|
21 |
+
|
22 |
+
return res["choices"][0]["text"]
|
23 |
+
|
24 |
+
#inputs = self.processor(inputs, image, return_tensors="pt")
|
25 |
+
#res = self.model.generate(**inputs, do_sample=False, max_new_tokens=4096)
|
26 |
+
#return self.processor.decode(res[0], skip_special_tokens=True)
|
27 |
+
|
28 |
+
#if image:
|
29 |
+
# perform image classification using Obsidian 3b vision
|
30 |
+
#image_features = self.vision.encode_image(image)
|
31 |
+
#image_embedding = self.vision.extract_feature(image_features)
|
32 |
+
#image_caption = self.vision.generate_caption(image_embedding)
|
33 |
+
|
34 |
+
# combine text and image captions
|
35 |
+
#combined_captions = [inputs, image_caption]
|
36 |
+
|
37 |
+
# run text classification on combined captions
|
38 |
+
#prediction = self.pipeline(combined_captions, temperature=0.33, num_beams=5, stop=[], do_sample=True)
|
39 |
+
|
40 |
+
#return prediction
|
41 |
+
|
42 |
+
|
43 |
+
#else:
|
44 |
+
# run text classification on plain text input
|
45 |
+
# prediction = self.pipeline(inputs, temperature=0.33, num_beams=5, stop=[], do_sample=True)
|
46 |
+
|
47 |
+
# return prediction
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
llama-cpp-python
|