File size: 31,306 Bytes
65d053d
 
 
 
 
 
 
 
 
 
 
 
 
a64db37
 
65d053d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a64db37
65d053d
 
 
 
 
 
 
 
 
 
 
cbabd28
65d053d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9952320
 
 
 
 
 
 
 
 
 
203cf2c
9952320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65d053d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800

---
license: apache-2.0
language:
- en
pipeline_tag: image-text-to-text
tags:
- multimodal
library_name: transformers
---

# <span style="color: #7FFF7F;">Qwen2.5-VL-7B-Instruct GGUF Models</span>

These files have been built using a imatrix file and latest llama.cpp build. You must use a fork of llama.cpp to run use vision with the model.

## How to Use Qwen 2.5 VL Instruct with llama.cpp

To utilize the experimental support for Qwen 2.5 VL in `llama.cpp`, follow these steps:
Note this uses a fork of llama.cpp. At this time the main branch does not support vision for this model
1. **Clone the lastest llama.cpp Fork**:
   ```bash
   git clone https://github.com/HimariO/llama.cpp.qwen2vl.git
   git checkout qwen25-vl
   cd llama.cpp
   ```


2. **Build the Llama.cpp**:

Build llama.cpp as usual : https://github.com/ggml-org/llama.cpp#building-the-project

Once the fork of llama.cpp is built Copy the ./llama.cpp/build/bin/llama-qwen2-vl-cli to a chosen folder.

3. **Download the Qwen 2.5 VL gguf file**:

https://huggingface.co/Mungert/Qwen2.5-VL-7B-Instruct-GGUF/tree/main

Choose a gguf file without the mmproj in the name

Example gguf file : https://huggingface.co/Mungert/Mungert/Qwen2.5-VL-7B-Instruct-GGUF/resolve/main/Qwen2.5-VL-7B-Instruct-q8_0.gguf

Copy this file to your chosen folder.

4. **Download the Qwen 2.5 VL mmproj file**

https://huggingface.co/Mungert/Qwen2.5-VL-7B-Instruct-GGUF/tree/main

Choose a file with mmproj in the name

Example mmproj file : https://huggingface.co/Mungert/Qwen2.5-VL-7B-Instruct-GGUF/resolve/main/Qwen2.5-VL-7B-Instruct-mmproj-f16.gguf

Copy this file to your chosen folder.

5. Copy images to the same folder as the gguf files or alter paths appropriately.
 
 In the example below the gguf files, images and llama-qwen2vl-cli are in the same folder.

 Example image:  image https://huggingface.co/Mungert/Qwen2.5-VL-7B-Instruct-GGUF/resolve/main/car-1.jpg

 Copy this file to your chosen folder.

6. **Run the CLI Tool**:

 From your chosen folder :
 
   ```bash
   llama-qwen2vl-cli -m Qwen2.5-VL-7B-Instruct-q8_0.gguf --mmproj Qwen2.5-VL-7B-Instruct-mmproj-f16.gguf  -p "Describe this image." --image ./car-1.jpg

   ```


## **Ultra-Low-Bit Quantization with IQ-DynamicGate (1-2 bit)**

Our latest quantization method introduces **precision-adaptive quantization** for ultra-low-bit models (1-2 bit), with benchmark-proven improvements on **Llama-3-8B**. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency.

### **Benchmark Context**
All tests conducted on **Llama-3-8B-Instruct** using:
- Standard perplexity evaluation pipeline
- 2048-token context window
- Same prompt set across all quantizations

### **Method**
- **Dynamic Precision Allocation**:  
  - First/Last 25% of layers β†’ IQ4_XS (selected layers)  
  - Middle 50% β†’ IQ2_XXS/IQ3_S (increase efficiency)  
- **Critical Component Protection**:  
  - Embeddings/output layers use Q5_K  
  - Reduces error propagation by 38% vs standard 1-2bit  

### **Quantization Performance Comparison (Llama-3-8B)**

| Quantization | Standard PPL | DynamicGate PPL | Ξ” PPL   | Std Size | DG Size | Ξ” Size | Std Speed | DG Speed |
|--------------|--------------|------------------|---------|----------|---------|--------|-----------|----------|
| IQ2_XXS      | 11.30        | 9.84             | -12.9%  | 2.5G     | 2.6G    | +0.1G  | 234s      | 246s     |
| IQ2_XS       | 11.72        | 11.63            | -0.8%   | 2.7G     | 2.8G    | +0.1G  | 242s      | 246s     |
| IQ2_S        | 14.31        | 9.02             | -36.9%  | 2.7G     | 2.9G    | +0.2G  | 238s      | 244s     |
| IQ1_M        | 27.46        | 15.41            | -43.9%  | 2.2G     | 2.5G    | +0.3G  | 206s      | 212s     |
| IQ1_S        | 53.07        | 32.00            | -39.7%  | 2.1G     | 2.4G    | +0.3G  | 184s      | 209s     |

**Key**:
- PPL = Perplexity (lower is better)
- Ξ” PPL = Percentage change from standard to DynamicGate
- Speed = Inference time (CPU avx2, 2048 token context)
- Size differences reflect mixed quantization overhead

**Key Improvements:**
- πŸ”₯ **IQ1_M** shows massive 43.9% perplexity reduction (27.46 β†’ 15.41)
- πŸš€ **IQ2_S** cuts perplexity by 36.9% while adding only 0.2GB
- ⚑ **IQ1_S** maintains 39.7% better accuracy despite 1-bit quantization

**Tradeoffs:**
- All variants have modest size increases (0.1-0.3GB)
- Inference speeds remain comparable (<5% difference)


### **When to Use These Models**
πŸ“Œ **Fitting models into GPU VRAM**
βœ” **Memory-constrained deployments**
βœ” **Cpu and Edge Devices** where 1-2bit errors can be tolerated  
βœ” **Research** into ultra-low-bit quantization  



## **Choosing the Right Model Format**  

Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**.  

### **BF16 (Brain Float 16) – Use if BF16 acceleration is available**  
- A 16-bit floating-point format designed for **faster computation** while retaining good precision.  
- Provides **similar dynamic range** as FP32 but with **lower memory usage**.  
- Recommended if your hardware supports **BF16 acceleration** (check your device’s specs).  
- Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32.  

πŸ“Œ **Use BF16 if:**  
βœ” Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs).  
βœ” You want **higher precision** while saving memory.  
βœ” You plan to **requantize** the model into another format.  

πŸ“Œ **Avoid BF16 if:**  
❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower).  
❌ You need compatibility with older devices that lack BF16 optimization.  

---

### **F16 (Float 16) – More widely supported than BF16**  
- A 16-bit floating-point **high precision** but with less of range of values than BF16. 
- Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs).  
- Slightly lower numerical precision than BF16 but generally sufficient for inference.  

πŸ“Œ **Use F16 if:**  
βœ” Your hardware supports **FP16** but **not BF16**.  
βœ” You need a **balance between speed, memory usage, and accuracy**.  
βœ” You are running on a **GPU** or another device optimized for FP16 computations.  

πŸ“Œ **Avoid F16 if:**  
❌ Your device lacks **native FP16 support** (it may run slower than expected).  
❌ You have memory limitations.  

---

### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference**  
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.  
- **Lower-bit models (Q4_K)** β†’ **Best for minimal memory usage**, may have lower precision.  
- **Higher-bit models (Q6_K, Q8_0)** β†’ **Better accuracy**, requires more memory.  

πŸ“Œ **Use Quantized Models if:**  
βœ” You are running inference on a **CPU** and need an optimized model.  
βœ” Your device has **low VRAM** and cannot load full-precision models.  
βœ” You want to reduce **memory footprint** while keeping reasonable accuracy.  

πŸ“Œ **Avoid Quantized Models if:**  
❌ You need **maximum accuracy** (full-precision models are better for this).  
❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).  

---

### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)**  
These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint.  

- **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**.  
  - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large.  
  - **Trade-off**: Lower accuracy compared to higher-bit quantizations.  

- **IQ3_S**: Small block size for **maximum memory efficiency**.  
  - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive.  

- **IQ3_M**: Medium block size for better accuracy than **IQ3_S**.  
  - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting.  

- **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy.  
  - **Use case**: Best for **low-memory devices** where **Q6_K** is too large.  

- **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**.  
  - **Use case**: Best for **ARM-based devices** or **low-memory environments**.  

---

### **Summary Table: Model Format Selection**  

| Model Format  | Precision  | Memory Usage  | Device Requirements  | Best Use Case  |  
|--------------|------------|---------------|----------------------|---------------|  
| **BF16**     | Highest    | High          | BF16-supported GPU/CPUs  | High-speed inference with reduced memory |  
| **F16**      | High       | High          | FP16-supported devices | GPU inference when BF16 isn’t available |  
| **Q4_K**     | Medium Low | Low           | CPU or Low-VRAM devices | Best for memory-constrained environments |  
| **Q6_K**     | Medium     | Moderate      | CPU with more memory | Better accuracy while still being quantized |  
| **Q8_0**     | High       | Moderate      | CPU or GPU with enough VRAM | Best accuracy among quantized models |  
| **IQ3_XS**   | Very Low   | Very Low      | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |  
| **Q4_0**     | Low        | Low           | ARM or low-memory devices | llama.cpp can optimize for ARM devices |  

---

## **Included Files & Details**  

### `Qwen2.5-VL-7B-Instruct-bf16.gguf`  
- Model weights preserved in **BF16**.  
- Use this if you want to **requantize** the model into a different format.  
- Best if your device supports **BF16 acceleration**.  

### `Qwen2.5-VL-7B-Instruct-f16.gguf`  
- Model weights stored in **F16**.  
- Use if your device supports **FP16**, especially if BF16 is not available.  

### `Qwen2.5-VL-7B-Instruct-bf16-q8_0.gguf`  
- **Output & embeddings** remain in **BF16**.  
- All other layers quantized to **Q8_0**.  
- Use if your device supports **BF16** and you want a quantized version.  

### `Qwen2.5-VL-7B-Instruct-f16-q8_0.gguf`  
- **Output & embeddings** remain in **F16**.  
- All other layers quantized to **Q8_0**.    

### `Qwen2.5-VL-7B-Instruct-q4_k.gguf`  
- **Output & embeddings** quantized to **Q8_0**.  
- All other layers quantized to **Q4_K**.  
- Good for **CPU inference** with limited memory.  

### `Qwen2.5-VL-7B-Instruct-q4_k_s.gguf`  
- Smallest **Q4_K** variant, using less memory at the cost of accuracy.  
- Best for **very low-memory setups**.  

### `Qwen2.5-VL-7B-Instruct-q6_k.gguf`  
- **Output & embeddings** quantized to **Q8_0**.  
- All other layers quantized to **Q6_K** .  

### `Qwen2.5-VL-7B-Instruct-q8_0.gguf`  
- Fully **Q8** quantized model for better accuracy.  
- Requires **more memory** but offers higher precision.  

### `Qwen2.5-VL-7B-Instruct-iq3_xs.gguf`  
- **IQ3_XS** quantization, optimized for **extreme memory efficiency**.  
- Best for **ultra-low-memory devices**.  

### `Qwen2.5-VL-7B-Instruct-iq3_m.gguf`  
- **IQ3_M** quantization, offering a **medium block size** for better accuracy.  
- Suitable for **low-memory devices**.  

### `Qwen2.5-VL-7B-Instruct-q4_0.gguf`  
- Pure **Q4_0** quantization, optimized for **ARM devices**.  
- Best for **low-memory environments**.
- Prefer IQ4_NL for better accuracy.

# <span id="testllm" style="color: #7F7FFF;">πŸš€ If you find these models useful</span>

Please click like ❀ . Also I’d really appreciate it if you could test my Network Monitor Assistant at πŸ‘‰ [Network Monitor Assitant](https://freenetworkmonitor.click/dashboard).

πŸ’¬ Click the **chat icon** (bottom right of the main and dashboard pages) . Choose a LLM; toggle between the LLM Types TurboLLM -> FreeLLM -> TestLLM.

### What I'm Testing

I'm experimenting with **function calling** against my network monitoring service. Using small open source models. I am into the question "How small can it go and still function".

🟑 **TestLLM** – Runs the current testing model using llama.cpp on 6 threads of a Cpu VM (Should take about 15s to load. Inference speed is quite slow and it only processes one user prompt at a timeβ€”still working on scaling!). If you're curious, I'd be happy to share how it works! .

### The other Available AI Assistants

🟒 **TurboLLM** – Uses **gpt-4o-mini** Fast! . Note: tokens are limited since OpenAI models are pricey, but you can [Login](https://freenetworkmonitor.click) or [Download](https://freenetworkmonitor.click/download) the Free Network Monitor agent to get more tokens, Alternatively use the TestLLM .

πŸ”΅ **HugLLM** – Runs **open-source Hugging Face models** Fast, Runs small models (β‰ˆ8B) hence lower quality, Get 2x more tokens (subject to Hugging Face API availability)




# Qwen2.5-VL-7B-Instruct
<a href="https://chat.qwenlm.ai/" target="_blank" style="margin: 2px;">
    <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
</a>

## Introduction

In the past five months since Qwen2-VL’s release, numerous developers have built new models on the Qwen2-VL vision-language models, providing us with valuable feedback. During this period, we focused on building more useful vision-language models. Today, we are excited to introduce the latest addition to the Qwen family: Qwen2.5-VL.

#### Key Enhancements:
* **Understand things visually**: Qwen2.5-VL is not only proficient in recognizing common objects such as flowers, birds, fish, and insects, but it is highly capable of analyzing texts, charts, icons, graphics, and layouts within images.

* **Being agentic**: Qwen2.5-VL directly plays as a visual agent that can reason and dynamically direct tools, which is capable of computer use and phone use.

* **Understanding long videos and capturing events**: Qwen2.5-VL can comprehend videos of over 1 hour, and this time it has a new ability of cpaturing event by pinpointing the relevant video segments.

* **Capable of visual localization in different formats**: Qwen2.5-VL can accurately localize objects in an image by generating bounding boxes or points, and it can provide stable JSON outputs for coordinates and attributes.

* **Generating structured outputs**: for data like scans of invoices, forms, tables, etc. Qwen2.5-VL supports structured outputs of their contents, benefiting usages in finance, commerce, etc.


#### Model Architecture Updates:

* **Dynamic Resolution and Frame Rate Training for Video Understanding**:

We extend dynamic resolution to the temporal dimension by adopting dynamic FPS sampling, enabling the model to comprehend videos at various sampling rates. Accordingly, we update mRoPE in the time dimension with IDs and absolute time alignment, enabling the model to learn temporal sequence and speed, and ultimately acquire the ability to pinpoint specific moments.

<p align="center">
    <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-VL/qwen2.5vl_arc.jpeg" width="80%"/>
<p>


* **Streamlined and Efficient Vision Encoder**

We enhance both training and inference speeds by strategically implementing window attention into the ViT. The ViT architecture is further optimized with SwiGLU and RMSNorm, aligning it with the structure of the Qwen2.5 LLM.


We have three models with 3, 7 and 72 billion parameters. This repo contains the instruction-tuned 7B Qwen2.5-VL model. For more information, visit our [Blog](https://qwenlm.github.io/blog/qwen2.5-vl/) and [GitHub](https://github.com/QwenLM/Qwen2.5-VL).



## Evaluation

### Image benchmark


| Benchmark | InternVL2.5-8B | MiniCPM-o 2.6 | GPT-4o-mini | Qwen2-VL-7B |**Qwen2.5-VL-7B** |
| :--- | :---: | :---: | :---: | :---: | :---: |
| MMMU<sub>val</sub>  | 56 | 50.4 | **60**| 54.1 | 58.6|
| MMMU-Pro<sub>val</sub>  | 34.3 | - | 37.6| 30.5 | 41.0|
| DocVQA<sub>test</sub>  | 93 | 93 | - | 94.5 | **95.7** |
| InfoVQA<sub>test</sub>  | 77.6 | - |  - |76.5 | **82.6** |
| ChartQA<sub>test</sub>  | 84.8 | - |- | 83.0 |**87.3** |
| TextVQA<sub>val</sub>  | 79.1 | 80.1 | -| 84.3 | **84.9**|
| OCRBench | 822 | 852 | 785 | 845 | **864** |
| CC_OCR | 57.7 |  | | 61.6 | **77.8**|
| MMStar | 62.8| | |60.7| **63.9**|
| MMBench-V1.1-En<sub>test</sub>  | 79.4 | 78.0 | 76.0| 80.7 | **82.6** |
| MMT-Bench<sub>test</sub> | - | - | - |**63.7** |63.6 |
| MMStar | **61.5** | 57.5 |  54.8 | 60.7 |63.9 |
| MMVet<sub>GPT-4-Turbo</sub>  | 54.2 | 60.0 | 66.9 | 62.0 | **67.1**|
| HallBench<sub>avg</sub>  | 45.2 | 48.1 | 46.1| 50.6 | **52.9**|
| MathVista<sub>testmini</sub>  | 58.3 | 60.6 | 52.4 | 58.2 | **68.2**|
| MathVision  | - | -  | - | 16.3 | **25.07** |

### Video Benchmarks

| Benchmark |  Qwen2-VL-7B | **Qwen2.5-VL-7B** |
| :--- | :---: | :---: |
| MVBench |  67.0 | **69.6** |
| PerceptionTest<sub>test</sub>  | 66.9 | **70.5** |
| Video-MME<sub>wo/w subs</sub>   | 63.3/69.0 | **65.1**/**71.6** |
| LVBench  |  | 45.3 |
| LongVideoBench  |  | 54.7 |
| MMBench-Video | 1.44 | 1.79 |
| TempCompass |  | 71.7 |
| MLVU |  | 70.2 |
| CharadesSTA/mIoU |  43.6|

### Agent benchmark
| Benchmarks              | Qwen2.5-VL-7B |
|-------------------------|---------------|
| ScreenSpot              |     84.7    |
| ScreenSpot Pro          |     29.0    |
| AITZ_EM                 |     81.9    |
| Android Control High_EM |     60.1    |
| Android Control Low_EM  |     93.7    |
| AndroidWorld_SR         |     25.5    |
| MobileMiniWob++_SR      |     91.4    |

## Requirements
The code of Qwen2.5-VL has been in the latest Hugging face transformers and we advise you to build from source with command:
```
pip install git+https://github.com/huggingface/transformers accelerate
```
or you might encounter the following error:
```
KeyError: 'qwen2_5_vl'
```


## Quickstart

Below, we provide simple examples to show how to use Qwen2.5-VL with πŸ€– ModelScope and πŸ€— Transformers.

The code of Qwen2.5-VL has been in the latest Hugging face transformers and we advise you to build from source with command:
```
pip install git+https://github.com/huggingface/transformers accelerate
```
or you might encounter the following error:
```
KeyError: 'qwen2_5_vl'
```


We offer a toolkit to help you handle various types of visual input more conveniently, as if you were using an API. This includes base64, URLs, and interleaved images and videos. You can install it using the following command:

```bash
# It's highly recommanded to use `[decord]` feature for faster video loading.
pip install qwen-vl-utils[decord]==0.0.8
```

If you are not using Linux, you might not be able to install `decord` from PyPI. In that case, you can use `pip install qwen-vl-utils` which will fall back to using torchvision for video processing. However, you can still [install decord from source](https://github.com/dmlc/decord?tab=readme-ov-file#install-from-source) to get decord used when loading video.

### Using πŸ€—  Transformers to Chat

Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_vl_utils`:

```python
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info

# default: Load the model on the available device(s)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)

# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
#     "Qwen/Qwen2.5-VL-7B-Instruct",
#     torch_dtype=torch.bfloat16,
#     attn_implementation="flash_attention_2",
#     device_map="auto",
# )

# default processer
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")

# The default range for the number of visual tokens per image in the model is 4-16384.
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]

# Preparation for inference
text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")

# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
<details>
<summary>Multi image inference</summary>

```python
# Messages containing multiple images and a text query
messages = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": "file:///path/to/image1.jpg"},
            {"type": "image", "image": "file:///path/to/image2.jpg"},
            {"type": "text", "text": "Identify the similarities between these images."},
        ],
    }
]

# Preparation for inference
text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")

# Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
</details>

<details>
<summary>Video inference</summary>

```python
# Messages containing a images list as a video and a text query
messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "video",
                "video": [
                    "file:///path/to/frame1.jpg",
                    "file:///path/to/frame2.jpg",
                    "file:///path/to/frame3.jpg",
                    "file:///path/to/frame4.jpg",
                ],
            },
            {"type": "text", "text": "Describe this video."},
        ],
    }
]

# Messages containing a local video path and a text query
messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "video",
                "video": "file:///path/to/video1.mp4",
                "max_pixels": 360 * 420,
                "fps": 1.0,
            },
            {"type": "text", "text": "Describe this video."},
        ],
    }
]

# Messages containing a video url and a text query
messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "video",
                "video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-VL/space_woaudio.mp4",
            },
            {"type": "text", "text": "Describe this video."},
        ],
    }
]

#In Qwen 2.5 VL, frame rate information is also input into the model to align with absolute time.
# Preparation for inference
text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    fps=fps,
    padding=True,
    return_tensors="pt",
    **video_kwargs,
)
inputs = inputs.to("cuda")

# Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```

Video URL compatibility largely depends on the third-party library version. The details are in the table below. change the backend by `FORCE_QWENVL_VIDEO_READER=torchvision` or `FORCE_QWENVL_VIDEO_READER=decord` if you prefer not to use the default one.

| Backend     | HTTP | HTTPS |
|-------------|------|-------|
| torchvision >= 0.19.0 | βœ…  | βœ…   |
| torchvision < 0.19.0  | ❌  | ❌   |
| decord      | βœ…  | ❌   |
</details>

<details>
<summary>Batch inference</summary>

```python
# Sample messages for batch inference
messages1 = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": "file:///path/to/image1.jpg"},
            {"type": "image", "image": "file:///path/to/image2.jpg"},
            {"type": "text", "text": "What are the common elements in these pictures?"},
        ],
    }
]
messages2 = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Who are you?"},
]
# Combine messages for batch processing
messages = [messages1, messages2]

# Preparation for batch inference
texts = [
    processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
    for msg in messages
]
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=texts,
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")

# Batch Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_texts = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_texts)
```
</details>

### πŸ€– ModelScope
We strongly advise users especially those in mainland China to use ModelScope. `snapshot_download` can help you solve issues concerning downloading checkpoints.


### More Usage Tips

For input images, we support local files, base64, and URLs. For videos, we currently only support local files.

```python
# You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.
## Local file path
messages = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": "file:///path/to/your/image.jpg"},
            {"type": "text", "text": "Describe this image."},
        ],
    }
]
## Image URL
messages = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": "http://path/to/your/image.jpg"},
            {"type": "text", "text": "Describe this image."},
        ],
    }
]
## Base64 encoded image
messages = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": "data:image;base64,/9j/..."},
            {"type": "text", "text": "Describe this image."},
        ],
    }
]
```
#### Image Resolution for performance boost

The model supports a wide range of resolution inputs. By default, it uses the native resolution for input, but higher resolutions can enhance performance at the cost of more computation. Users can set the minimum and maximum number of pixels to achieve an optimal configuration for their needs, such as a token count range of 256-1280, to balance speed and memory usage.

```python
min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28
processor = AutoProcessor.from_pretrained(
    "Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
)
```

Besides, We provide two methods for fine-grained control over the image size input to the model:

1. Define min_pixels and max_pixels: Images will be resized to maintain their aspect ratio within the range of min_pixels and max_pixels.
   
2. Specify exact dimensions: Directly set `resized_height` and `resized_width`. These values will be rounded to the nearest multiple of 28.

```python
# min_pixels and max_pixels
messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "file:///path/to/your/image.jpg",
                "resized_height": 280,
                "resized_width": 420,
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]
# resized_height and resized_width
messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "file:///path/to/your/image.jpg",
                "min_pixels": 50176,
                "max_pixels": 50176,
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]
```

### Processing Long Texts

The current `config.json` is set for context length up to 32,768 tokens.
To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.

For supported frameworks, you could add the following to `config.json` to enable YaRN:

{
        ...,
    "type": "yarn",
    "mrope_section": [
        16,
        24,
        24
    ],
    "factor": 4,
    "original_max_position_embeddings": 32768
}

However, it should be noted that this method has a significant impact on the performance of temporal and spatial localization tasks, and is therefore not recommended for use.

At the same time, for long video inputs, since MRoPE itself is more economical with ids, the max_position_embeddings can be directly modified to a larger value, such as 64k.




## Citation

If you find our work helpful, feel free to give us a cite.

```
@misc{qwen2.5-VL,
    title = {Qwen2.5-VL},
    url = {https://qwenlm.github.io/blog/qwen2.5-vl/},
    author = {Qwen Team},
    month = {January},
    year = {2025}
}

@article{Qwen2VL,
  title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
  author={Wang, Peng and Bai, Shuai and Tan, Sinan and Wang, Shijie and Fan, Zhihao and Bai, Jinze and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Fan, Yang and Dang, Kai and Du, Mengfei and Ren, Xuancheng and Men, Rui and Liu, Dayiheng and Zhou, Chang and Zhou, Jingren and Lin, Junyang},
  journal={arXiv preprint arXiv:2409.12191},
  year={2024}
}

@article{Qwen-VL,
  title={Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond},
  author={Bai, Jinze and Bai, Shuai and Yang, Shusheng and Wang, Shijie and Tan, Sinan and Wang, Peng and Lin, Junyang and Zhou, Chang and Zhou, Jingren},
  journal={arXiv preprint arXiv:2308.12966},
  year={2023}
}
```