Weiyun1025 commited on
Commit
c6c0583
·
verified ·
1 Parent(s): afdfec9

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: image-text-to-text
4
+ library_name: transformers
5
+ base_model:
6
+ - OpenGVLab/InternVL2_5-8B
7
+ - OpenGVLab/InternVL2_5-8B-MPO
8
+ base_model_relation: finetune
9
+ datasets:
10
+ - OpenGVLab/MMPR-v1.2
11
+ - OpenGVLab/VisualPRM400K-v1.1
12
+ language:
13
+ - multilingual
14
+ tags:
15
+ - internvl
16
+ - custom_code
17
+ ---
18
+
19
+ # VisualPRM-8B-v1.1
20
+
21
+ [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL)
22
+ [\[📜 Paper\]](https://arxiv.org/abs/2503.10291)
23
+ [\[🆕 Blog\]](https://internvl.github.io/blog/2025-03-13-VisualPRM/)
24
+ [\[🤗 model\]](https://huggingface.co/OpenGVLab/VisualPRM-8B-v1.1)
25
+ [\[🤗 dataset\]](https://huggingface.co/datasets/OpenGVLab/VisualPRM400K)
26
+ [\[🤗 benchmark\]](https://huggingface.co/datasets/OpenGVLab/VisualProcessBench)
27
+
28
+ ***This is a newer version of [VisualPRM-8B](https://huggingface.co/OpenGVLab/VisualPRM-8B), which exhibits superior performance compared to [VisualPRM-8B](https://huggingface.co/OpenGVLab/VisualPRM-8B).***
29
+
30
+ ## Introduction
31
+
32
+ We introduce VisualPRM, an advanced multimodal Process Reward Model (PRM) with 8B parameters, which improves the reasoning abilities of existing Multimodal Large Language Models (MLLMs) across different model scales and families with Best-of-N (BoN) evaluation strategies. **Specifically, our model improves the reasoning performance of three types of MLLMs and four different model scales. Even when applied to the highly capable InternVL2.5-78B, it achieves a 5.9-point improvement across seven multimodal reasoning benchmarks.** Experimental results show that our model exhibits superior performance compared to Outcome Reward Models and Self-Consistency during BoN evaluation. To facilitate the training of multimodal PRMs, we construct a multimodal process supervision dataset VisualPRM400K using an automated data pipeline. For the evaluation of multimodal PRMs, we propose VisualProcessBench, a benchmark with human-annotated step-wise correctness labels, to measure the abilities of PRMs to detect erroneous steps in multimodal reasoning tasks. We hope that our work can inspire more future research and contribute to the development of MLLMs.
33
+
34
+ ![image/png](https://github.com/InternVL/InternVL.github.io/blob/main/blog/2025-03-13-VisualPRM/images/teaser.png?raw=true)
35
+
36
+ ## Performance
37
+
38
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/XVv8M4u-GOOJknrSnGWI4.png)
39
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/DjMtYbrZo0J-LPVk_qiCt.png)
40
+
41
+
42
+ ## Inference with Transformers
43
+
44
+ ```python
45
+ import torch
46
+ import torchvision.transforms as T
47
+
48
+ from PIL import Image
49
+ from transformers import AutoModel, AutoTokenizer
50
+ from torchvision.transforms.functional import InterpolationMode
51
+
52
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
53
+ IMAGENET_STD = (0.229, 0.224, 0.225)
54
+
55
+ def build_transform(input_size):
56
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
57
+ transform = T.Compose([
58
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
59
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
60
+ T.ToTensor(),
61
+ T.Normalize(mean=MEAN, std=STD)
62
+ ])
63
+ return transform
64
+
65
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
66
+ best_ratio_diff = float('inf')
67
+ best_ratio = (1, 1)
68
+ area = width * height
69
+ for ratio in target_ratios:
70
+ target_aspect_ratio = ratio[0] / ratio[1]
71
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
72
+ if ratio_diff < best_ratio_diff:
73
+ best_ratio_diff = ratio_diff
74
+ best_ratio = ratio
75
+ elif ratio_diff == best_ratio_diff:
76
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
77
+ best_ratio = ratio
78
+ return best_ratio
79
+
80
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
81
+ orig_width, orig_height = image.size
82
+ aspect_ratio = orig_width / orig_height
83
+
84
+ # calculate the existing image aspect ratio
85
+ target_ratios = set(
86
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
87
+ i * j <= max_num and i * j >= min_num)
88
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
89
+
90
+ # find the closest aspect ratio to the target
91
+ target_aspect_ratio = find_closest_aspect_ratio(
92
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
93
+
94
+ # calculate the target width and height
95
+ target_width = image_size * target_aspect_ratio[0]
96
+ target_height = image_size * target_aspect_ratio[1]
97
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
98
+
99
+ # resize the image
100
+ resized_img = image.resize((target_width, target_height))
101
+ processed_images = []
102
+ for i in range(blocks):
103
+ box = (
104
+ (i % (target_width // image_size)) * image_size,
105
+ (i // (target_width // image_size)) * image_size,
106
+ ((i % (target_width // image_size)) + 1) * image_size,
107
+ ((i // (target_width // image_size)) + 1) * image_size
108
+ )
109
+ # split the image
110
+ split_img = resized_img.crop(box)
111
+ processed_images.append(split_img)
112
+ assert len(processed_images) == blocks
113
+ if use_thumbnail and len(processed_images) != 1:
114
+ thumbnail_img = image.resize((image_size, image_size))
115
+ processed_images.append(thumbnail_img)
116
+ return processed_images
117
+
118
+ def load_image(image, input_size=448, max_num=12):
119
+ image = Image.open(image).convert('RGB')
120
+ transform = build_transform(input_size=input_size)
121
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
122
+ pixel_values = [transform(image) for image in images]
123
+ pixel_values = torch.stack(pixel_values)
124
+ return pixel_values
125
+
126
+ def main():
127
+ path = 'OpenGVLab/VisualPRM-8B-v1.1'
128
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
129
+ model = AutoModel.from_pretrained(
130
+ path,
131
+ trust_remote_code=True,
132
+ low_cpu_mem_usage=True,
133
+ torch_dtype=torch.bfloat16,
134
+ ).eval().cuda()
135
+
136
+ question = 'Find m \\angle 3.'
137
+
138
+ response_a = """
139
+ To find the measure of \\angle 3, we need to use the properties of the angles in the given geometric figure.
140
+
141
+ 1. \\angle EDC is a right angle, and it is split into \\angle EDF and \\angle 3.
142
+
143
+ 2. We know that \\angle EDF = 39^\\circ because it is labeled in the diagram.
144
+
145
+ 3. Since \\angle EDC is 90^\\circ, we can set up the equation for \\angle 3: \\angle EDC = \\angle EDF + \\angle 3
146
+
147
+ 4. Substituting the known values, we get: 90^\\circ = 39^\\circ + \\angle 3
148
+
149
+ 5. Solving for \\angle 3: \\angle 3 = 90^\\circ - 39^\\circ
150
+
151
+ 6. Simplifying the equation: \\angle 3 = 51^\\circ
152
+
153
+ Final answer: 51^\\circ
154
+ """.strip()
155
+
156
+ response_b = """
157
+ To find \\( m \\angle 3 \\), we need to analyze the given geometric figure carefully.
158
+
159
+ 1. Recognize that \\( \\angle 3 \\) is part of triangle \\( BCE \\). Since \\( \\angle 1 \\) is given as 48° and \\( \\angle 2 \\) is a right angle (90°), we can use the properties of a right triangle to find \\( \\angle 3 \\).
160
+
161
+ 2. The sum of the angles in any triangle is 180°. Therefore, in triangle \\( BCE \\): \[ \\angle 1 + \\angle 2 + \\angle 3 = 180° \]
162
+
163
+ 3. Substitute the known values: \[ 48° + 90° + \\angle 3 = 180° \]
164
+
165
+ 4. Solve for \\( \\angle 3 \\): \[ \\angle 3 = 180° - 48° - 90° = 42° \]
166
+
167
+ Thus, the measure of \\( \\angle 3 \\) is 42°.
168
+
169
+ Final answer: 42
170
+ """.strip()
171
+
172
+ response_list = [
173
+ response_a,
174
+ response_b,
175
+ ]
176
+ image = 'examples/image.png'
177
+ pixel_values = load_image(image).to(torch.bfloat16).cuda()
178
+
179
+ sorted_response_list = model.select_best_response(
180
+ tokenizer=tokenizer,
181
+ question=question,
182
+ response_list=response_list,
183
+ pixel_values=pixel_values,
184
+ return_scores=True,
185
+ )
186
+
187
+ print('Best response:', sorted_response_list[0][0])
188
+ print('Highest score:', sorted_response_list[0][1])
189
+
190
+ if __name__ == '__main__':
191
+ main()
192
+ ```
193
+
194
+ ## License
195
+
196
+ This project is released under the MIT License. This project uses the pre-trained internlm2_5-7b-chat as a component, which is licensed under the Apache License 2.0.
197
+
198
+ ## Citation
199
+
200
+ If you find this project useful in your research, please consider citing:
201
+
202
+ ```BibTeX
203
+ @article{wang2025visualprm,
204
+ title={VisualPRM: An Effective Process Reward Model for Multimodal Reasoning},
205
+ author={Wang, Weiyun and Gao, Zhangwei and Chen, Lianjie and Chen, Zhe and Zhu, Jinguo and Zhao, Xiangyu and Liu, Yangzhou and Cao, Yue and Ye, Shenglong and Zhu, Xizhou and others},
206
+ journal={arXiv preprint arXiv:2503.10291},
207
+ year={2025}
208
+ }
209
+ ```
added_tokens.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 151673,
3
+ "</img>": 151666,
4
+ "</quad>": 151669,
5
+ "</ref>": 151671,
6
+ "</tool_call>": 151658,
7
+ "<IMG_CONTEXT>": 151667,
8
+ "<box>": 151672,
9
+ "<img>": 151665,
10
+ "<quad>": 151668,
11
+ "<ref>": 151670,
12
+ "<tool_call>": 151657,
13
+ "<|box_end|>": 151649,
14
+ "<|box_start|>": 151648,
15
+ "<|endoftext|>": 151643,
16
+ "<|file_sep|>": 151664,
17
+ "<|fim_middle|>": 151660,
18
+ "<|fim_pad|>": 151662,
19
+ "<|fim_prefix|>": 151659,
20
+ "<|fim_suffix|>": 151661,
21
+ "<|im_end|>": 151645,
22
+ "<|im_start|>": 151644,
23
+ "<|image_pad|>": 151655,
24
+ "<|object_ref_end|>": 151647,
25
+ "<|object_ref_start|>": 151646,
26
+ "<|quad_end|>": 151651,
27
+ "<|quad_start|>": 151650,
28
+ "<|repo_name|>": 151663,
29
+ "<|video_pad|>": 151656,
30
+ "<|vision_end|>": 151653,
31
+ "<|vision_pad|>": 151654,
32
+ "<|vision_start|>": 151652
33
+ }
config.json ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "/mnt/petrelfs/share_data/wangweiyun/share_internvl/InternVL3-8B-MPO",
4
+ "architectures": [
5
+ "InternVLRewardModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
9
+ "AutoModel": "modeling_internvl_chat.InternVLRewardModel",
10
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLRewardModel"
11
+ },
12
+ "downsample_ratio": 0.5,
13
+ "dynamic_image_size": true,
14
+ "force_image_size": 448,
15
+ "hidden_size": 3584,
16
+ "image_fold": null,
17
+ "llm_config": {
18
+ "_attn_implementation_autoset": true,
19
+ "_name_or_path": "./pretrained/Qwen2.5-32B-Instruct",
20
+ "add_cross_attention": false,
21
+ "architectures": [
22
+ "Qwen2ForCausalLM"
23
+ ],
24
+ "attention_dropout": 0.0,
25
+ "attn_implementation": "flash_attention_2",
26
+ "bad_words_ids": null,
27
+ "begin_suppress_tokens": null,
28
+ "bos_token_id": 151643,
29
+ "chunk_size_feed_forward": 0,
30
+ "cross_attention_hidden_size": null,
31
+ "decoder_start_token_id": null,
32
+ "diversity_penalty": 0.0,
33
+ "do_sample": false,
34
+ "early_stopping": false,
35
+ "encoder_no_repeat_ngram_size": 0,
36
+ "eos_token_id": 151643,
37
+ "exponential_decay_length_penalty": null,
38
+ "finetuning_task": null,
39
+ "forced_bos_token_id": null,
40
+ "forced_eos_token_id": null,
41
+ "hidden_act": "silu",
42
+ "hidden_size": 3584,
43
+ "id2label": {
44
+ "0": "LABEL_0",
45
+ "1": "LABEL_1"
46
+ },
47
+ "initializer_range": 0.02,
48
+ "intermediate_size": 18944,
49
+ "is_decoder": false,
50
+ "is_encoder_decoder": false,
51
+ "label2id": {
52
+ "LABEL_0": 0,
53
+ "LABEL_1": 1
54
+ },
55
+ "length_penalty": 1.0,
56
+ "max_length": 20,
57
+ "max_position_embeddings": 32768,
58
+ "max_window_layers": 70,
59
+ "min_length": 0,
60
+ "model_type": "qwen2",
61
+ "moe_config": null,
62
+ "no_repeat_ngram_size": 0,
63
+ "num_attention_heads": 28,
64
+ "num_beam_groups": 1,
65
+ "num_beams": 1,
66
+ "num_hidden_layers": 28,
67
+ "num_key_value_heads": 4,
68
+ "num_return_sequences": 1,
69
+ "output_attentions": false,
70
+ "output_hidden_states": false,
71
+ "output_scores": false,
72
+ "pad_token_id": null,
73
+ "prefix": null,
74
+ "problem_type": null,
75
+ "pruned_heads": {},
76
+ "remove_invalid_values": false,
77
+ "repetition_penalty": 1.0,
78
+ "return_dict": true,
79
+ "return_dict_in_generate": false,
80
+ "rms_norm_eps": 1e-06,
81
+ "rope_scaling": {
82
+ "factor": 2.0,
83
+ "rope_type": "dynamic",
84
+ "type": "dynamic"
85
+ },
86
+ "rope_theta": 1000000.0,
87
+ "sep_token_id": null,
88
+ "sliding_window": null,
89
+ "suppress_tokens": null,
90
+ "task_specific_params": null,
91
+ "temperature": 1.0,
92
+ "tf_legacy_loss": false,
93
+ "tie_encoder_decoder": false,
94
+ "tie_word_embeddings": false,
95
+ "tokenizer_class": null,
96
+ "top_k": 50,
97
+ "top_p": 1.0,
98
+ "torch_dtype": "bfloat16",
99
+ "torchscript": false,
100
+ "transformers_version": "4.37.2",
101
+ "typical_p": 1.0,
102
+ "use_bfloat16": true,
103
+ "use_cache": false,
104
+ "use_sliding_window": false,
105
+ "vocab_size": 151674
106
+ },
107
+ "max_dynamic_patch": 12,
108
+ "min_dynamic_patch": 1,
109
+ "model_type": "internvl_chat",
110
+ "pad2square": false,
111
+ "ps_version": "v2",
112
+ "select_layer": -1,
113
+ "system_message": null,
114
+ "template": "internvl2_5",
115
+ "tie_word_embeddings": false,
116
+ "torch_dtype": "bfloat16",
117
+ "transformers_version": null,
118
+ "use_backbone_lora": 0,
119
+ "use_llm_lora": 0,
120
+ "use_thumbnail": true,
121
+ "vision_config": {
122
+ "_attn_implementation_autoset": true,
123
+ "_name_or_path": "OpenGVLab/InternViT-6B-448px-V1-5",
124
+ "add_cross_attention": false,
125
+ "architectures": [
126
+ "InternVisionModel"
127
+ ],
128
+ "attention_dropout": 0.0,
129
+ "auto_map": {
130
+ "AutoConfig": "configuration_intern_vit.InternVisionConfig",
131
+ "AutoModel": "modeling_intern_vit.InternVisionModel"
132
+ },
133
+ "bad_words_ids": null,
134
+ "begin_suppress_tokens": null,
135
+ "bos_token_id": null,
136
+ "capacity_factor": 1.2,
137
+ "chunk_size_feed_forward": 0,
138
+ "cross_attention_hidden_size": null,
139
+ "decoder_start_token_id": null,
140
+ "diversity_penalty": 0.0,
141
+ "do_sample": false,
142
+ "drop_path_rate": 0.1,
143
+ "dropout": 0.0,
144
+ "early_stopping": false,
145
+ "encoder_no_repeat_ngram_size": 0,
146
+ "eos_token_id": null,
147
+ "eval_capacity_factor": 1.4,
148
+ "exponential_decay_length_penalty": null,
149
+ "finetuning_task": null,
150
+ "forced_bos_token_id": null,
151
+ "forced_eos_token_id": null,
152
+ "hidden_act": "gelu",
153
+ "hidden_size": 1024,
154
+ "id2label": {
155
+ "0": "LABEL_0",
156
+ "1": "LABEL_1"
157
+ },
158
+ "image_size": 448,
159
+ "initializer_factor": 0.1,
160
+ "initializer_range": 1e-10,
161
+ "intermediate_size": 4096,
162
+ "is_decoder": false,
163
+ "is_encoder_decoder": false,
164
+ "label2id": {
165
+ "LABEL_0": 0,
166
+ "LABEL_1": 1
167
+ },
168
+ "laux_allreduce": "all_nodes",
169
+ "layer_norm_eps": 1e-06,
170
+ "length_penalty": 1.0,
171
+ "max_length": 20,
172
+ "min_length": 0,
173
+ "model_type": "intern_vit_6b",
174
+ "moe_coeff_ratio": 0.5,
175
+ "moe_intermediate_size": 768,
176
+ "moe_output_scale": 4.0,
177
+ "no_repeat_ngram_size": 0,
178
+ "noisy_gate_policy": "RSample_before",
179
+ "norm_type": "layer_norm",
180
+ "num_attention_heads": 16,
181
+ "num_beam_groups": 1,
182
+ "num_beams": 1,
183
+ "num_channels": 3,
184
+ "num_experts": 8,
185
+ "num_hidden_layers": 24,
186
+ "num_return_sequences": 1,
187
+ "num_routed_experts": 4,
188
+ "num_shared_experts": 4,
189
+ "output_attentions": false,
190
+ "output_hidden_states": false,
191
+ "output_scores": false,
192
+ "pad_token_id": null,
193
+ "patch_size": 14,
194
+ "prefix": null,
195
+ "problem_type": null,
196
+ "pruned_heads": {},
197
+ "qk_normalization": false,
198
+ "qkv_bias": true,
199
+ "remove_invalid_values": false,
200
+ "repetition_penalty": 1.0,
201
+ "return_dict": true,
202
+ "return_dict_in_generate": false,
203
+ "sep_token_id": null,
204
+ "shared_expert_intermediate_size": 3072,
205
+ "suppress_tokens": null,
206
+ "task_specific_params": null,
207
+ "temperature": 1.0,
208
+ "tf_legacy_loss": false,
209
+ "tie_encoder_decoder": false,
210
+ "tie_word_embeddings": true,
211
+ "tokenizer_class": null,
212
+ "top_k": 50,
213
+ "top_p": 1.0,
214
+ "torch_dtype": "bfloat16",
215
+ "torchscript": false,
216
+ "transformers_version": "4.37.2",
217
+ "typical_p": 1.0,
218
+ "use_bfloat16": true,
219
+ "use_flash_attn": true,
220
+ "use_moe": false,
221
+ "use_residual": true,
222
+ "use_rts": false,
223
+ "use_weighted_residual": false
224
+ }
225
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import os
8
+ from typing import Union
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+
16
+ class InternVisionConfig(PretrainedConfig):
17
+ r"""
18
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
19
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
20
+
21
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
22
+ documentation from [`PretrainedConfig`] for more information.
23
+
24
+ Args:
25
+ num_channels (`int`, *optional*, defaults to 3):
26
+ Number of color channels in the input images (e.g., 3 for RGB).
27
+ patch_size (`int`, *optional*, defaults to 14):
28
+ The size (resolution) of each patch.
29
+ image_size (`int`, *optional*, defaults to 224):
30
+ The size (resolution) of each image.
31
+ qkv_bias (`bool`, *optional*, defaults to `False`):
32
+ Whether to add a bias to the queries and values in the self-attention layers.
33
+ hidden_size (`int`, *optional*, defaults to 3200):
34
+ Dimensionality of the encoder layers and the pooler layer.
35
+ num_attention_heads (`int`, *optional*, defaults to 25):
36
+ Number of attention heads for each attention layer in the Transformer encoder.
37
+ intermediate_size (`int`, *optional*, defaults to 12800):
38
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
39
+ qk_normalization (`bool`, *optional*, defaults to `True`):
40
+ Whether to normalize the queries and keys in the self-attention layers.
41
+ num_hidden_layers (`int`, *optional*, defaults to 48):
42
+ Number of hidden layers in the Transformer encoder.
43
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
44
+ Whether to use flash attention mechanism.
45
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
46
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
47
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
48
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
49
+ The epsilon used by the layer normalization layers.
50
+ dropout (`float`, *optional*, defaults to 0.0):
51
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
52
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
53
+ Dropout rate for stochastic depth.
54
+ attention_dropout (`float`, *optional*, defaults to 0.0):
55
+ The dropout ratio for the attention probabilities.
56
+ initializer_range (`float`, *optional*, defaults to 0.02):
57
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
58
+ initializer_factor (`float`, *optional*, defaults to 0.1):
59
+ A factor for layer scale.
60
+ """
61
+
62
+ model_type = 'intern_vit_6b'
63
+
64
+ def __init__(
65
+ self,
66
+ num_channels=3,
67
+ patch_size=14,
68
+ image_size=224,
69
+ qkv_bias=False,
70
+ hidden_size=3200,
71
+ num_attention_heads=25,
72
+ intermediate_size=12800,
73
+ qk_normalization=True,
74
+ num_hidden_layers=48,
75
+ use_flash_attn=True,
76
+ hidden_act='gelu',
77
+ norm_type='rms_norm',
78
+ layer_norm_eps=1e-6,
79
+ dropout=0.0,
80
+ drop_path_rate=0.0,
81
+ attention_dropout=0.0,
82
+ initializer_range=0.02,
83
+ initializer_factor=0.1,
84
+ **kwargs,
85
+ ):
86
+ super().__init__(**kwargs)
87
+
88
+ self.hidden_size = hidden_size
89
+ self.intermediate_size = intermediate_size
90
+ self.dropout = dropout
91
+ self.drop_path_rate = drop_path_rate
92
+ self.num_hidden_layers = num_hidden_layers
93
+ self.num_attention_heads = num_attention_heads
94
+ self.num_channels = num_channels
95
+ self.patch_size = patch_size
96
+ self.image_size = image_size
97
+ self.initializer_range = initializer_range
98
+ self.initializer_factor = initializer_factor
99
+ self.attention_dropout = attention_dropout
100
+ self.layer_norm_eps = layer_norm_eps
101
+ self.hidden_act = hidden_act
102
+ self.norm_type = norm_type
103
+ self.qkv_bias = qkv_bias
104
+ self.qk_normalization = qk_normalization
105
+ self.use_flash_attn = use_flash_attn
106
+
107
+ @classmethod
108
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
109
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
110
+
111
+ if 'vision_config' in config_dict:
112
+ config_dict = config_dict['vision_config']
113
+
114
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
115
+ logger.warning(
116
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
117
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
118
+ )
119
+
120
+ return cls.from_dict(config_dict, **kwargs)
configuration_internvl_chat.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig, Qwen2Config
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+
15
+ logger = logging.get_logger(__name__)
16
+
17
+
18
+ class InternVLChatConfig(PretrainedConfig):
19
+ model_type = 'internvl_chat'
20
+ is_composition = True
21
+
22
+ def __init__(
23
+ self,
24
+ vision_config=None,
25
+ llm_config=None,
26
+ use_backbone_lora=0,
27
+ use_llm_lora=0,
28
+ select_layer=-1,
29
+ force_image_size=None,
30
+ downsample_ratio=0.5,
31
+ template=None,
32
+ dynamic_image_size=False,
33
+ use_thumbnail=False,
34
+ ps_version='v1',
35
+ min_dynamic_patch=1,
36
+ max_dynamic_patch=6,
37
+ **kwargs):
38
+ super().__init__(**kwargs)
39
+
40
+ if vision_config is None:
41
+ vision_config = {'architectures': ['InternVisionModel']}
42
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
43
+
44
+ if llm_config is None:
45
+ llm_config = {'architectures': ['Qwen2ForCausalLM']}
46
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
47
+
48
+ self.vision_config = InternVisionConfig(**vision_config)
49
+ if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
50
+ self.llm_config = LlamaConfig(**llm_config)
51
+ elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
52
+ self.llm_config = Qwen2Config(**llm_config)
53
+ else:
54
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
55
+ self.use_backbone_lora = use_backbone_lora
56
+ self.use_llm_lora = use_llm_lora
57
+ self.select_layer = select_layer
58
+ self.force_image_size = force_image_size
59
+ self.downsample_ratio = downsample_ratio
60
+ self.template = template
61
+ self.dynamic_image_size = dynamic_image_size
62
+ self.use_thumbnail = use_thumbnail
63
+ self.ps_version = ps_version # pixel shuffle version
64
+ self.min_dynamic_patch = min_dynamic_patch
65
+ self.max_dynamic_patch = max_dynamic_patch
66
+ # By default, we use tie_word_embeddings=False for models of all sizes.
67
+ self.tie_word_embeddings = self.llm_config.tie_word_embeddings
68
+
69
+ logger.info(f'vision_select_layer: {self.select_layer}')
70
+ logger.info(f'ps_version: {self.ps_version}')
71
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
72
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
73
+
74
+ def to_dict(self):
75
+ """
76
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
77
+
78
+ Returns:
79
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
80
+ """
81
+ output = copy.deepcopy(self.__dict__)
82
+ output['vision_config'] = self.vision_config.to_dict()
83
+ output['llm_config'] = self.llm_config.to_dict()
84
+ output['model_type'] = self.__class__.model_type
85
+ output['use_backbone_lora'] = self.use_backbone_lora
86
+ output['use_llm_lora'] = self.use_llm_lora
87
+ output['select_layer'] = self.select_layer
88
+ output['force_image_size'] = self.force_image_size
89
+ output['downsample_ratio'] = self.downsample_ratio
90
+ output['template'] = self.template
91
+ output['dynamic_image_size'] = self.dynamic_image_size
92
+ output['use_thumbnail'] = self.use_thumbnail
93
+ output['ps_version'] = self.ps_version
94
+ output['min_dynamic_patch'] = self.min_dynamic_patch
95
+ output['max_dynamic_patch'] = self.max_dynamic_patch
96
+
97
+ return output
conversation.py ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+
7
+ Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
8
+ """
9
+
10
+ import dataclasses
11
+ from enum import IntEnum, auto
12
+ from typing import Dict, List, Tuple, Union
13
+
14
+
15
+ class SeparatorStyle(IntEnum):
16
+ """Separator styles."""
17
+
18
+ ADD_COLON_SINGLE = auto()
19
+ ADD_COLON_TWO = auto()
20
+ ADD_COLON_SPACE_SINGLE = auto()
21
+ NO_COLON_SINGLE = auto()
22
+ NO_COLON_TWO = auto()
23
+ ADD_NEW_LINE_SINGLE = auto()
24
+ LLAMA2 = auto()
25
+ CHATGLM = auto()
26
+ CHATML = auto()
27
+ CHATINTERN = auto()
28
+ DOLLY = auto()
29
+ RWKV = auto()
30
+ PHOENIX = auto()
31
+ ROBIN = auto()
32
+ FALCON_CHAT = auto()
33
+ CHATGLM3 = auto()
34
+ INTERNVL_ZH = auto()
35
+ MPT = auto()
36
+
37
+
38
+ @dataclasses.dataclass
39
+ class Conversation:
40
+ """A class that manages prompt templates and keeps all conversation history."""
41
+
42
+ # The name of this template
43
+ name: str
44
+ # The template of the system prompt
45
+ system_template: str = '{system_message}'
46
+ # The system message
47
+ system_message: str = ''
48
+ # The names of two roles
49
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
50
+ # All messages. Each item is (role, message).
51
+ messages: List[List[str]] = ()
52
+ # The number of few shot examples
53
+ offset: int = 0
54
+ # The separator style and configurations
55
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
56
+ sep: str = '\n'
57
+ sep2: str = None
58
+ # Stop criteria (the default one is EOS token)
59
+ stop_str: Union[str, List[str]] = None
60
+ # Stops generation if meeting any token in this list
61
+ stop_token_ids: List[int] = None
62
+
63
+ def get_prompt(self) -> str:
64
+ """Get the prompt for generation."""
65
+ system_prompt = self.system_template.format(system_message=self.system_message)
66
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
67
+ ret = system_prompt + self.sep
68
+ for role, message in self.messages:
69
+ if message:
70
+ ret += role + ': ' + message + self.sep
71
+ else:
72
+ ret += role + ':'
73
+ return ret
74
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
75
+ seps = [self.sep, self.sep2]
76
+ ret = system_prompt + seps[0]
77
+ for i, (role, message) in enumerate(self.messages):
78
+ if message:
79
+ ret += role + ': ' + message + seps[i % 2]
80
+ else:
81
+ ret += role + ':'
82
+ return ret
83
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
84
+ ret = system_prompt + self.sep
85
+ for role, message in self.messages:
86
+ if message:
87
+ ret += role + ': ' + message + self.sep
88
+ else:
89
+ ret += role + ': ' # must be end with a space
90
+ return ret
91
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
92
+ ret = '' if system_prompt == '' else system_prompt + self.sep
93
+ for role, message in self.messages:
94
+ if message:
95
+ ret += role + '\n' + message + self.sep
96
+ else:
97
+ ret += role + '\n'
98
+ return ret
99
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
100
+ ret = system_prompt
101
+ for role, message in self.messages:
102
+ if message:
103
+ ret += role + message + self.sep
104
+ else:
105
+ ret += role
106
+ return ret
107
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
108
+ seps = [self.sep, self.sep2]
109
+ ret = system_prompt
110
+ for i, (role, message) in enumerate(self.messages):
111
+ if message:
112
+ ret += role + message + seps[i % 2]
113
+ else:
114
+ ret += role
115
+ return ret
116
+ elif self.sep_style == SeparatorStyle.RWKV:
117
+ ret = system_prompt
118
+ for i, (role, message) in enumerate(self.messages):
119
+ if message:
120
+ ret += (
121
+ role
122
+ + ': '
123
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
124
+ )
125
+ ret += '\n\n'
126
+ else:
127
+ ret += role + ':'
128
+ return ret
129
+ elif self.sep_style == SeparatorStyle.LLAMA2:
130
+ seps = [self.sep, self.sep2]
131
+ if self.system_message:
132
+ ret = system_prompt
133
+ else:
134
+ ret = '[INST] '
135
+ for i, (role, message) in enumerate(self.messages):
136
+ tag = self.roles[i % 2]
137
+ if message:
138
+ if i == 0:
139
+ ret += message + ' '
140
+ else:
141
+ ret += tag + ' ' + message + seps[i % 2]
142
+ else:
143
+ ret += tag
144
+ return ret
145
+ elif self.sep_style == SeparatorStyle.CHATGLM:
146
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
147
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
148
+ round_add_n = 1 if self.name == 'chatglm2' else 0
149
+ if system_prompt:
150
+ ret = system_prompt + self.sep
151
+ else:
152
+ ret = ''
153
+
154
+ for i, (role, message) in enumerate(self.messages):
155
+ if i % 2 == 0:
156
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
157
+
158
+ if message:
159
+ ret += f'{role}:{message}{self.sep}'
160
+ else:
161
+ ret += f'{role}:'
162
+ return ret
163
+ elif self.sep_style == SeparatorStyle.CHATML:
164
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
165
+ for role, message in self.messages:
166
+ if message:
167
+ ret += role + '\n' + message + self.sep + '\n'
168
+ else:
169
+ ret += role + '\n'
170
+ return ret
171
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
172
+ ret = ''
173
+ if self.system_message:
174
+ ret += system_prompt
175
+ for role, message in self.messages:
176
+ if message:
177
+ ret += role + '\n' + ' ' + message
178
+ else:
179
+ ret += role
180
+ return ret
181
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
182
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
183
+ seps = [self.sep, self.sep2]
184
+ ret = system_prompt
185
+ for i, (role, message) in enumerate(self.messages):
186
+ # if i % 2 == 0:
187
+ # ret += "<s>"
188
+ if message:
189
+ ret += role + ':' + message + seps[i % 2] + '\n'
190
+ else:
191
+ ret += role + ':'
192
+ return ret
193
+ elif self.sep_style == SeparatorStyle.DOLLY:
194
+ seps = [self.sep, self.sep2]
195
+ ret = system_prompt
196
+ for i, (role, message) in enumerate(self.messages):
197
+ if message:
198
+ ret += role + ':\n' + message + seps[i % 2]
199
+ if i % 2 == 1:
200
+ ret += '\n\n'
201
+ else:
202
+ ret += role + ':\n'
203
+ return ret
204
+ elif self.sep_style == SeparatorStyle.PHOENIX:
205
+ ret = system_prompt
206
+ for role, message in self.messages:
207
+ if message:
208
+ ret += role + ': ' + '<s>' + message + '</s>'
209
+ else:
210
+ ret += role + ': ' + '<s>'
211
+ return ret
212
+ elif self.sep_style == SeparatorStyle.ROBIN:
213
+ ret = system_prompt + self.sep
214
+ for role, message in self.messages:
215
+ if message:
216
+ ret += role + ':\n' + message + self.sep
217
+ else:
218
+ ret += role + ':\n'
219
+ return ret
220
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
221
+ ret = ''
222
+ if self.system_message:
223
+ ret += system_prompt + self.sep
224
+ for role, message in self.messages:
225
+ if message:
226
+ ret += role + ': ' + message + self.sep
227
+ else:
228
+ ret += role + ':'
229
+
230
+ return ret
231
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
232
+ seps = [self.sep, self.sep2]
233
+ ret = self.system_message + seps[0]
234
+ for i, (role, message) in enumerate(self.messages):
235
+ if message:
236
+ ret += role + ': ' + message + seps[i % 2]
237
+ else:
238
+ ret += role + ':'
239
+ return ret
240
+ elif self.sep_style == SeparatorStyle.MPT:
241
+ ret = system_prompt + self.sep
242
+ for role, message in self.messages:
243
+ if message:
244
+ if type(message) is tuple:
245
+ message, _, _ = message
246
+ ret += role + message + self.sep
247
+ else:
248
+ ret += role
249
+ return ret
250
+ else:
251
+ raise ValueError(f'Invalid style: {self.sep_style}')
252
+
253
+ def set_system_message(self, system_message: str):
254
+ """Set the system message."""
255
+ self.system_message = system_message
256
+
257
+ def append_message(self, role: str, message: str):
258
+ """Append a new message."""
259
+ self.messages.append([role, message])
260
+
261
+ def update_last_message(self, message: str):
262
+ """Update the last output.
263
+
264
+ The last message is typically set to be None when constructing the prompt,
265
+ so we need to update it in-place after getting the response from a model.
266
+ """
267
+ self.messages[-1][1] = message
268
+
269
+ def to_gradio_chatbot(self):
270
+ """Convert the conversation to gradio chatbot format."""
271
+ ret = []
272
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
273
+ if i % 2 == 0:
274
+ ret.append([msg, None])
275
+ else:
276
+ ret[-1][-1] = msg
277
+ return ret
278
+
279
+ def to_openai_api_messages(self):
280
+ """Convert the conversation to OpenAI chat completion format."""
281
+ ret = [{'role': 'system', 'content': self.system_message}]
282
+
283
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
284
+ if i % 2 == 0:
285
+ ret.append({'role': 'user', 'content': msg})
286
+ else:
287
+ if msg is not None:
288
+ ret.append({'role': 'assistant', 'content': msg})
289
+ return ret
290
+
291
+ def copy(self):
292
+ return Conversation(
293
+ name=self.name,
294
+ system_template=self.system_template,
295
+ system_message=self.system_message,
296
+ roles=self.roles,
297
+ messages=[[x, y] for x, y in self.messages],
298
+ offset=self.offset,
299
+ sep_style=self.sep_style,
300
+ sep=self.sep,
301
+ sep2=self.sep2,
302
+ stop_str=self.stop_str,
303
+ stop_token_ids=self.stop_token_ids,
304
+ )
305
+
306
+ def dict(self):
307
+ return {
308
+ 'template_name': self.name,
309
+ 'system_message': self.system_message,
310
+ 'roles': self.roles,
311
+ 'messages': self.messages,
312
+ 'offset': self.offset,
313
+ }
314
+
315
+
316
+ # A global registry for all conversation templates
317
+ conv_templates: Dict[str, Conversation] = {}
318
+
319
+
320
+ def register_conv_template(template: Conversation, override: bool = False):
321
+ """Register a new conversation template."""
322
+ if not override:
323
+ assert (
324
+ template.name not in conv_templates
325
+ ), f'{template.name} has been registered.'
326
+
327
+ conv_templates[template.name] = template
328
+
329
+
330
+ def get_conv_template(name: str) -> Conversation:
331
+ """Get a conversation template."""
332
+ return conv_templates[name].copy()
333
+
334
+
335
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
336
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
337
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
338
+ # Therefore, they are completely equivalent during inference.
339
+ register_conv_template(
340
+ Conversation(
341
+ name='Hermes-2',
342
+ system_template='<|im_start|>system\n{system_message}',
343
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
344
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
345
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
346
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
347
+ sep_style=SeparatorStyle.MPT,
348
+ sep='<|im_end|>',
349
+ stop_str='<|endoftext|>',
350
+ )
351
+ )
352
+
353
+
354
+ register_conv_template(
355
+ Conversation(
356
+ name='internlm2-chat',
357
+ system_template='<|im_start|>system\n{system_message}',
358
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
359
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
360
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
361
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
362
+ sep_style=SeparatorStyle.MPT,
363
+ sep='<|im_end|>',
364
+ )
365
+ )
366
+
367
+
368
+ register_conv_template(
369
+ Conversation(
370
+ name='phi3-chat',
371
+ system_template='<|system|>\n{system_message}',
372
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
373
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
374
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
375
+ roles=('<|user|>\n', '<|assistant|>\n'),
376
+ sep_style=SeparatorStyle.MPT,
377
+ sep='<|end|>',
378
+ )
379
+ )
380
+
381
+
382
+ register_conv_template(
383
+ Conversation(
384
+ name='internvl2_5',
385
+ system_template='<|im_start|>system\n{system_message}',
386
+ system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
387
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
388
+ sep_style=SeparatorStyle.MPT,
389
+ sep='<|im_end|>\n',
390
+ )
391
+ )
examples/image.png ADDED
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.37.2"
4
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7837c6ad2de487324836545b6761d9260fccb8983147453cf71771a7c8e8dc3a
3
+ size 4991123960
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b718a6fe40ec0feff64fe11684140654a1cd68084c67c95c57e55d94e23a2a01
3
+ size 4958443072
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5129c058ef84053ec8316cc9d5e7621e12c7a6f7cc22d7f43a2306e14a947a5
3
+ size 4796984024
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a6d51ce50635af4d524d7d3f5f7ee5027b232eb14fa3859338f5c5feb55d6bc
3
+ size 1142280864
model.safetensors.index.json ADDED
@@ -0,0 +1,692 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15888747520
4
+ },
5
+ "weight_map": {
6
+ "language_model.lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "language_model.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "language_model.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "language_model.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "language_model.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "language_model.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "language_model.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "language_model.model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "language_model.model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "language_model.model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "language_model.model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "language_model.model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "language_model.model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "language_model.model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "language_model.model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "language_model.model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "language_model.model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "language_model.model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "language_model.model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "language_model.model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "language_model.model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "language_model.model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "language_model.model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "language_model.model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "language_model.model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "language_model.model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "language_model.model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "language_model.model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "language_model.model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
118
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "language_model.model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "language_model.model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "language_model.model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "language_model.model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "language_model.model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
134
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
135
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
136
+ "language_model.model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
137
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
138
+ "language_model.model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
139
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
140
+ "language_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "language_model.model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "language_model.model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "language_model.model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "language_model.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "language_model.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "language_model.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "language_model.model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "language_model.model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "language_model.model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "language_model.model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "language_model.model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "language_model.model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "language_model.model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "language_model.model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "language_model.model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "language_model.model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "language_model.model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "language_model.model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "language_model.model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "language_model.model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "language_model.model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "language_model.model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "language_model.model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "language_model.model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "language_model.model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "language_model.model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "language_model.model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "language_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "language_model.model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "language_model.model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "language_model.model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "language_model.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "language_model.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "language_model.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "language_model.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "language_model.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "language_model.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "language_model.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "language_model.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "language_model.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "language_model.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "language_model.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "language_model.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
309
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
310
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
311
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
312
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
313
+ "language_model.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
316
+ "language_model.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "language_model.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "language_model.model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
326
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
327
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
328
+ "language_model.model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
329
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
330
+ "language_model.model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
331
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
332
+ "language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "language_model.model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "language_model.model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "language_model.model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "language_model.model.norm.weight": "model-00003-of-00004.safetensors",
345
+ "mlp1.0.bias": "model-00004-of-00004.safetensors",
346
+ "mlp1.0.weight": "model-00004-of-00004.safetensors",
347
+ "mlp1.1.bias": "model-00004-of-00004.safetensors",
348
+ "mlp1.1.weight": "model-00004-of-00004.safetensors",
349
+ "mlp1.3.bias": "model-00004-of-00004.safetensors",
350
+ "mlp1.3.weight": "model-00004-of-00004.safetensors",
351
+ "vision_model.embeddings.class_embedding": "model-00001-of-00004.safetensors",
352
+ "vision_model.embeddings.patch_embedding.bias": "model-00001-of-00004.safetensors",
353
+ "vision_model.embeddings.patch_embedding.weight": "model-00001-of-00004.safetensors",
354
+ "vision_model.embeddings.position_embedding": "model-00001-of-00004.safetensors",
355
+ "vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00004.safetensors",
356
+ "vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00004.safetensors",
357
+ "vision_model.encoder.layers.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
358
+ "vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
359
+ "vision_model.encoder.layers.0.ls1": "model-00001-of-00004.safetensors",
360
+ "vision_model.encoder.layers.0.ls2": "model-00001-of-00004.safetensors",
361
+ "vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
362
+ "vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
363
+ "vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
364
+ "vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
365
+ "vision_model.encoder.layers.0.norm1.bias": "model-00001-of-00004.safetensors",
366
+ "vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00004.safetensors",
367
+ "vision_model.encoder.layers.0.norm2.bias": "model-00001-of-00004.safetensors",
368
+ "vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00004.safetensors",
369
+ "vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00004.safetensors",
370
+ "vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00004.safetensors",
371
+ "vision_model.encoder.layers.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
372
+ "vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
373
+ "vision_model.encoder.layers.1.ls1": "model-00001-of-00004.safetensors",
374
+ "vision_model.encoder.layers.1.ls2": "model-00001-of-00004.safetensors",
375
+ "vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
376
+ "vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
377
+ "vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
378
+ "vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
379
+ "vision_model.encoder.layers.1.norm1.bias": "model-00001-of-00004.safetensors",
380
+ "vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00004.safetensors",
381
+ "vision_model.encoder.layers.1.norm2.bias": "model-00001-of-00004.safetensors",
382
+ "vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00004.safetensors",
383
+ "vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00004.safetensors",
384
+ "vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00004.safetensors",
385
+ "vision_model.encoder.layers.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
386
+ "vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
387
+ "vision_model.encoder.layers.10.ls1": "model-00001-of-00004.safetensors",
388
+ "vision_model.encoder.layers.10.ls2": "model-00001-of-00004.safetensors",
389
+ "vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
390
+ "vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
391
+ "vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
392
+ "vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
393
+ "vision_model.encoder.layers.10.norm1.bias": "model-00001-of-00004.safetensors",
394
+ "vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00004.safetensors",
395
+ "vision_model.encoder.layers.10.norm2.bias": "model-00001-of-00004.safetensors",
396
+ "vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00004.safetensors",
397
+ "vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00004.safetensors",
398
+ "vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00004.safetensors",
399
+ "vision_model.encoder.layers.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
400
+ "vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
401
+ "vision_model.encoder.layers.11.ls1": "model-00001-of-00004.safetensors",
402
+ "vision_model.encoder.layers.11.ls2": "model-00001-of-00004.safetensors",
403
+ "vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
404
+ "vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
405
+ "vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
406
+ "vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
407
+ "vision_model.encoder.layers.11.norm1.bias": "model-00001-of-00004.safetensors",
408
+ "vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00004.safetensors",
409
+ "vision_model.encoder.layers.11.norm2.bias": "model-00001-of-00004.safetensors",
410
+ "vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00004.safetensors",
411
+ "vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00004.safetensors",
412
+ "vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00004.safetensors",
413
+ "vision_model.encoder.layers.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
414
+ "vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
415
+ "vision_model.encoder.layers.12.ls1": "model-00001-of-00004.safetensors",
416
+ "vision_model.encoder.layers.12.ls2": "model-00001-of-00004.safetensors",
417
+ "vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
418
+ "vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
419
+ "vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
420
+ "vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
421
+ "vision_model.encoder.layers.12.norm1.bias": "model-00001-of-00004.safetensors",
422
+ "vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00004.safetensors",
423
+ "vision_model.encoder.layers.12.norm2.bias": "model-00001-of-00004.safetensors",
424
+ "vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00004.safetensors",
425
+ "vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00004.safetensors",
426
+ "vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00004.safetensors",
427
+ "vision_model.encoder.layers.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
428
+ "vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
429
+ "vision_model.encoder.layers.13.ls1": "model-00001-of-00004.safetensors",
430
+ "vision_model.encoder.layers.13.ls2": "model-00001-of-00004.safetensors",
431
+ "vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
432
+ "vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
433
+ "vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
434
+ "vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
435
+ "vision_model.encoder.layers.13.norm1.bias": "model-00001-of-00004.safetensors",
436
+ "vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00004.safetensors",
437
+ "vision_model.encoder.layers.13.norm2.bias": "model-00001-of-00004.safetensors",
438
+ "vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00004.safetensors",
439
+ "vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00004.safetensors",
440
+ "vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00004.safetensors",
441
+ "vision_model.encoder.layers.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
442
+ "vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
443
+ "vision_model.encoder.layers.14.ls1": "model-00001-of-00004.safetensors",
444
+ "vision_model.encoder.layers.14.ls2": "model-00001-of-00004.safetensors",
445
+ "vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
446
+ "vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
447
+ "vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
448
+ "vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
449
+ "vision_model.encoder.layers.14.norm1.bias": "model-00001-of-00004.safetensors",
450
+ "vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00004.safetensors",
451
+ "vision_model.encoder.layers.14.norm2.bias": "model-00001-of-00004.safetensors",
452
+ "vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00004.safetensors",
453
+ "vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00004.safetensors",
454
+ "vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00004.safetensors",
455
+ "vision_model.encoder.layers.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
456
+ "vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
457
+ "vision_model.encoder.layers.15.ls1": "model-00001-of-00004.safetensors",
458
+ "vision_model.encoder.layers.15.ls2": "model-00001-of-00004.safetensors",
459
+ "vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
460
+ "vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
461
+ "vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
462
+ "vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
463
+ "vision_model.encoder.layers.15.norm1.bias": "model-00001-of-00004.safetensors",
464
+ "vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00004.safetensors",
465
+ "vision_model.encoder.layers.15.norm2.bias": "model-00001-of-00004.safetensors",
466
+ "vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00004.safetensors",
467
+ "vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00004.safetensors",
468
+ "vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00004.safetensors",
469
+ "vision_model.encoder.layers.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
470
+ "vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
471
+ "vision_model.encoder.layers.16.ls1": "model-00001-of-00004.safetensors",
472
+ "vision_model.encoder.layers.16.ls2": "model-00001-of-00004.safetensors",
473
+ "vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
474
+ "vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
475
+ "vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
476
+ "vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
477
+ "vision_model.encoder.layers.16.norm1.bias": "model-00001-of-00004.safetensors",
478
+ "vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00004.safetensors",
479
+ "vision_model.encoder.layers.16.norm2.bias": "model-00001-of-00004.safetensors",
480
+ "vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00004.safetensors",
481
+ "vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00004.safetensors",
482
+ "vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00004.safetensors",
483
+ "vision_model.encoder.layers.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
484
+ "vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
485
+ "vision_model.encoder.layers.17.ls1": "model-00001-of-00004.safetensors",
486
+ "vision_model.encoder.layers.17.ls2": "model-00001-of-00004.safetensors",
487
+ "vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
488
+ "vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
489
+ "vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
490
+ "vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
491
+ "vision_model.encoder.layers.17.norm1.bias": "model-00001-of-00004.safetensors",
492
+ "vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00004.safetensors",
493
+ "vision_model.encoder.layers.17.norm2.bias": "model-00001-of-00004.safetensors",
494
+ "vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00004.safetensors",
495
+ "vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00004.safetensors",
496
+ "vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00004.safetensors",
497
+ "vision_model.encoder.layers.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
498
+ "vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
499
+ "vision_model.encoder.layers.18.ls1": "model-00001-of-00004.safetensors",
500
+ "vision_model.encoder.layers.18.ls2": "model-00001-of-00004.safetensors",
501
+ "vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
502
+ "vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
503
+ "vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
504
+ "vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
505
+ "vision_model.encoder.layers.18.norm1.bias": "model-00001-of-00004.safetensors",
506
+ "vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00004.safetensors",
507
+ "vision_model.encoder.layers.18.norm2.bias": "model-00001-of-00004.safetensors",
508
+ "vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00004.safetensors",
509
+ "vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00004.safetensors",
510
+ "vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00004.safetensors",
511
+ "vision_model.encoder.layers.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
512
+ "vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
513
+ "vision_model.encoder.layers.19.ls1": "model-00001-of-00004.safetensors",
514
+ "vision_model.encoder.layers.19.ls2": "model-00001-of-00004.safetensors",
515
+ "vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
516
+ "vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
517
+ "vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
518
+ "vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
519
+ "vision_model.encoder.layers.19.norm1.bias": "model-00001-of-00004.safetensors",
520
+ "vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00004.safetensors",
521
+ "vision_model.encoder.layers.19.norm2.bias": "model-00001-of-00004.safetensors",
522
+ "vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00004.safetensors",
523
+ "vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00004.safetensors",
524
+ "vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00004.safetensors",
525
+ "vision_model.encoder.layers.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
526
+ "vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
527
+ "vision_model.encoder.layers.2.ls1": "model-00001-of-00004.safetensors",
528
+ "vision_model.encoder.layers.2.ls2": "model-00001-of-00004.safetensors",
529
+ "vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
530
+ "vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
531
+ "vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
532
+ "vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
533
+ "vision_model.encoder.layers.2.norm1.bias": "model-00001-of-00004.safetensors",
534
+ "vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00004.safetensors",
535
+ "vision_model.encoder.layers.2.norm2.bias": "model-00001-of-00004.safetensors",
536
+ "vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00004.safetensors",
537
+ "vision_model.encoder.layers.20.attn.proj.bias": "model-00001-of-00004.safetensors",
538
+ "vision_model.encoder.layers.20.attn.proj.weight": "model-00001-of-00004.safetensors",
539
+ "vision_model.encoder.layers.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
540
+ "vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
541
+ "vision_model.encoder.layers.20.ls1": "model-00001-of-00004.safetensors",
542
+ "vision_model.encoder.layers.20.ls2": "model-00001-of-00004.safetensors",
543
+ "vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
544
+ "vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
545
+ "vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
546
+ "vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
547
+ "vision_model.encoder.layers.20.norm1.bias": "model-00001-of-00004.safetensors",
548
+ "vision_model.encoder.layers.20.norm1.weight": "model-00001-of-00004.safetensors",
549
+ "vision_model.encoder.layers.20.norm2.bias": "model-00001-of-00004.safetensors",
550
+ "vision_model.encoder.layers.20.norm2.weight": "model-00001-of-00004.safetensors",
551
+ "vision_model.encoder.layers.21.attn.proj.bias": "model-00001-of-00004.safetensors",
552
+ "vision_model.encoder.layers.21.attn.proj.weight": "model-00001-of-00004.safetensors",
553
+ "vision_model.encoder.layers.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
554
+ "vision_model.encoder.layers.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
555
+ "vision_model.encoder.layers.21.ls1": "model-00001-of-00004.safetensors",
556
+ "vision_model.encoder.layers.21.ls2": "model-00001-of-00004.safetensors",
557
+ "vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
558
+ "vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
559
+ "vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
560
+ "vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
561
+ "vision_model.encoder.layers.21.norm1.bias": "model-00001-of-00004.safetensors",
562
+ "vision_model.encoder.layers.21.norm1.weight": "model-00001-of-00004.safetensors",
563
+ "vision_model.encoder.layers.21.norm2.bias": "model-00001-of-00004.safetensors",
564
+ "vision_model.encoder.layers.21.norm2.weight": "model-00001-of-00004.safetensors",
565
+ "vision_model.encoder.layers.22.attn.proj.bias": "model-00001-of-00004.safetensors",
566
+ "vision_model.encoder.layers.22.attn.proj.weight": "model-00001-of-00004.safetensors",
567
+ "vision_model.encoder.layers.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
568
+ "vision_model.encoder.layers.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
569
+ "vision_model.encoder.layers.22.ls1": "model-00001-of-00004.safetensors",
570
+ "vision_model.encoder.layers.22.ls2": "model-00001-of-00004.safetensors",
571
+ "vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
572
+ "vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
573
+ "vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
574
+ "vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
575
+ "vision_model.encoder.layers.22.norm1.bias": "model-00001-of-00004.safetensors",
576
+ "vision_model.encoder.layers.22.norm1.weight": "model-00001-of-00004.safetensors",
577
+ "vision_model.encoder.layers.22.norm2.bias": "model-00001-of-00004.safetensors",
578
+ "vision_model.encoder.layers.22.norm2.weight": "model-00001-of-00004.safetensors",
579
+ "vision_model.encoder.layers.23.attn.proj.bias": "model-00001-of-00004.safetensors",
580
+ "vision_model.encoder.layers.23.attn.proj.weight": "model-00001-of-00004.safetensors",
581
+ "vision_model.encoder.layers.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
582
+ "vision_model.encoder.layers.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
583
+ "vision_model.encoder.layers.23.ls1": "model-00001-of-00004.safetensors",
584
+ "vision_model.encoder.layers.23.ls2": "model-00001-of-00004.safetensors",
585
+ "vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
586
+ "vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
587
+ "vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
588
+ "vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
589
+ "vision_model.encoder.layers.23.norm1.bias": "model-00001-of-00004.safetensors",
590
+ "vision_model.encoder.layers.23.norm1.weight": "model-00001-of-00004.safetensors",
591
+ "vision_model.encoder.layers.23.norm2.bias": "model-00001-of-00004.safetensors",
592
+ "vision_model.encoder.layers.23.norm2.weight": "model-00001-of-00004.safetensors",
593
+ "vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00004.safetensors",
594
+ "vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00004.safetensors",
595
+ "vision_model.encoder.layers.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
596
+ "vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
597
+ "vision_model.encoder.layers.3.ls1": "model-00001-of-00004.safetensors",
598
+ "vision_model.encoder.layers.3.ls2": "model-00001-of-00004.safetensors",
599
+ "vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
600
+ "vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
601
+ "vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
602
+ "vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
603
+ "vision_model.encoder.layers.3.norm1.bias": "model-00001-of-00004.safetensors",
604
+ "vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00004.safetensors",
605
+ "vision_model.encoder.layers.3.norm2.bias": "model-00001-of-00004.safetensors",
606
+ "vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00004.safetensors",
607
+ "vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00004.safetensors",
608
+ "vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00004.safetensors",
609
+ "vision_model.encoder.layers.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
610
+ "vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
611
+ "vision_model.encoder.layers.4.ls1": "model-00001-of-00004.safetensors",
612
+ "vision_model.encoder.layers.4.ls2": "model-00001-of-00004.safetensors",
613
+ "vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
614
+ "vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
615
+ "vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
616
+ "vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
617
+ "vision_model.encoder.layers.4.norm1.bias": "model-00001-of-00004.safetensors",
618
+ "vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00004.safetensors",
619
+ "vision_model.encoder.layers.4.norm2.bias": "model-00001-of-00004.safetensors",
620
+ "vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00004.safetensors",
621
+ "vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00004.safetensors",
622
+ "vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00004.safetensors",
623
+ "vision_model.encoder.layers.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
624
+ "vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
625
+ "vision_model.encoder.layers.5.ls1": "model-00001-of-00004.safetensors",
626
+ "vision_model.encoder.layers.5.ls2": "model-00001-of-00004.safetensors",
627
+ "vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
628
+ "vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
629
+ "vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
630
+ "vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
631
+ "vision_model.encoder.layers.5.norm1.bias": "model-00001-of-00004.safetensors",
632
+ "vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00004.safetensors",
633
+ "vision_model.encoder.layers.5.norm2.bias": "model-00001-of-00004.safetensors",
634
+ "vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00004.safetensors",
635
+ "vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00004.safetensors",
636
+ "vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00004.safetensors",
637
+ "vision_model.encoder.layers.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
638
+ "vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
639
+ "vision_model.encoder.layers.6.ls1": "model-00001-of-00004.safetensors",
640
+ "vision_model.encoder.layers.6.ls2": "model-00001-of-00004.safetensors",
641
+ "vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
642
+ "vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
643
+ "vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
644
+ "vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
645
+ "vision_model.encoder.layers.6.norm1.bias": "model-00001-of-00004.safetensors",
646
+ "vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00004.safetensors",
647
+ "vision_model.encoder.layers.6.norm2.bias": "model-00001-of-00004.safetensors",
648
+ "vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00004.safetensors",
649
+ "vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00004.safetensors",
650
+ "vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00004.safetensors",
651
+ "vision_model.encoder.layers.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
652
+ "vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
653
+ "vision_model.encoder.layers.7.ls1": "model-00001-of-00004.safetensors",
654
+ "vision_model.encoder.layers.7.ls2": "model-00001-of-00004.safetensors",
655
+ "vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
656
+ "vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
657
+ "vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
658
+ "vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
659
+ "vision_model.encoder.layers.7.norm1.bias": "model-00001-of-00004.safetensors",
660
+ "vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00004.safetensors",
661
+ "vision_model.encoder.layers.7.norm2.bias": "model-00001-of-00004.safetensors",
662
+ "vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00004.safetensors",
663
+ "vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00004.safetensors",
664
+ "vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00004.safetensors",
665
+ "vision_model.encoder.layers.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
666
+ "vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
667
+ "vision_model.encoder.layers.8.ls1": "model-00001-of-00004.safetensors",
668
+ "vision_model.encoder.layers.8.ls2": "model-00001-of-00004.safetensors",
669
+ "vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
670
+ "vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
671
+ "vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
672
+ "vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
673
+ "vision_model.encoder.layers.8.norm1.bias": "model-00001-of-00004.safetensors",
674
+ "vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00004.safetensors",
675
+ "vision_model.encoder.layers.8.norm2.bias": "model-00001-of-00004.safetensors",
676
+ "vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00004.safetensors",
677
+ "vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00004.safetensors",
678
+ "vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00004.safetensors",
679
+ "vision_model.encoder.layers.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
680
+ "vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
681
+ "vision_model.encoder.layers.9.ls1": "model-00001-of-00004.safetensors",
682
+ "vision_model.encoder.layers.9.ls2": "model-00001-of-00004.safetensors",
683
+ "vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
684
+ "vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
685
+ "vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
686
+ "vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
687
+ "vision_model.encoder.layers.9.norm1.bias": "model-00001-of-00004.safetensors",
688
+ "vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00004.safetensors",
689
+ "vision_model.encoder.layers.9.norm2.bias": "model-00001-of-00004.safetensors",
690
+ "vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00004.safetensors"
691
+ }
692
+ }
modeling_intern_vit.py ADDED
@@ -0,0 +1,431 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ from typing import Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint
12
+ from einops import rearrange
13
+ from timm.models.layers import DropPath
14
+ from torch import nn
15
+ from transformers.activations import ACT2FN
16
+ from transformers.modeling_outputs import (BaseModelOutput,
17
+ BaseModelOutputWithPooling)
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import logging
20
+
21
+ from .configuration_intern_vit import InternVisionConfig
22
+
23
+ try:
24
+ from flash_attn.bert_padding import pad_input, unpad_input
25
+ from flash_attn.flash_attn_interface import \
26
+ flash_attn_varlen_qkvpacked_func
27
+ has_flash_attn = True
28
+ except:
29
+ print('FlashAttention2 is not installed.')
30
+ has_flash_attn = False
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+
35
+ class FlashAttention(nn.Module):
36
+ """Implement the scaled dot product attention with softmax.
37
+ Arguments
38
+ ---------
39
+ softmax_scale: The temperature to use for the softmax attention.
40
+ (default: 1/sqrt(d_keys) where d_keys is computed at
41
+ runtime)
42
+ attention_dropout: The dropout rate to apply to the attention
43
+ (default: 0.0)
44
+ """
45
+
46
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
47
+ super().__init__()
48
+ self.softmax_scale = softmax_scale
49
+ self.dropout_p = attention_dropout
50
+
51
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
52
+ max_s=None, need_weights=False):
53
+ """Implements the multihead softmax attention.
54
+ Arguments
55
+ ---------
56
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
57
+ if unpadded: (nnz, 3, h, d)
58
+ key_padding_mask: a bool tensor of shape (B, S)
59
+ """
60
+ assert not need_weights
61
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
62
+ assert qkv.is_cuda
63
+
64
+ if cu_seqlens is None:
65
+ batch_size = qkv.shape[0]
66
+ seqlen = qkv.shape[1]
67
+ if key_padding_mask is None:
68
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
69
+ max_s = seqlen
70
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
71
+ device=qkv.device)
72
+ output = flash_attn_varlen_qkvpacked_func(
73
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
74
+ softmax_scale=self.softmax_scale, causal=causal
75
+ )
76
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
77
+ else:
78
+ nheads = qkv.shape[-2]
79
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
80
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
81
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
82
+ output_unpad = flash_attn_varlen_qkvpacked_func(
83
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
84
+ softmax_scale=self.softmax_scale, causal=causal
85
+ )
86
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
87
+ indices, batch_size, seqlen),
88
+ 'b s (h d) -> b s h d', h=nheads)
89
+ else:
90
+ assert max_s is not None
91
+ output = flash_attn_varlen_qkvpacked_func(
92
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
93
+ softmax_scale=self.softmax_scale, causal=causal
94
+ )
95
+
96
+ return output, None
97
+
98
+
99
+ class InternRMSNorm(nn.Module):
100
+ def __init__(self, hidden_size, eps=1e-6):
101
+ super().__init__()
102
+ self.weight = nn.Parameter(torch.ones(hidden_size))
103
+ self.variance_epsilon = eps
104
+
105
+ def forward(self, hidden_states):
106
+ input_dtype = hidden_states.dtype
107
+ hidden_states = hidden_states.to(torch.float32)
108
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
109
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
110
+ return self.weight * hidden_states.to(input_dtype)
111
+
112
+
113
+ try:
114
+ from apex.normalization import FusedRMSNorm
115
+
116
+ InternRMSNorm = FusedRMSNorm # noqa
117
+
118
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
119
+ except ImportError:
120
+ # using the normal InternRMSNorm
121
+ pass
122
+ except Exception:
123
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
124
+ pass
125
+
126
+
127
+ NORM2FN = {
128
+ 'rms_norm': InternRMSNorm,
129
+ 'layer_norm': nn.LayerNorm,
130
+ }
131
+
132
+
133
+ class InternVisionEmbeddings(nn.Module):
134
+ def __init__(self, config: InternVisionConfig):
135
+ super().__init__()
136
+ self.config = config
137
+ self.embed_dim = config.hidden_size
138
+ self.image_size = config.image_size
139
+ self.patch_size = config.patch_size
140
+
141
+ self.class_embedding = nn.Parameter(
142
+ torch.randn(1, 1, self.embed_dim),
143
+ )
144
+
145
+ self.patch_embedding = nn.Conv2d(
146
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
147
+ )
148
+
149
+ self.num_patches = (self.image_size // self.patch_size) ** 2
150
+ self.num_positions = self.num_patches + 1
151
+
152
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
153
+
154
+ def _get_pos_embed(self, pos_embed, H, W):
155
+ target_dtype = pos_embed.dtype
156
+ pos_embed = pos_embed.float().reshape(
157
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
158
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
159
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
160
+ return pos_embed
161
+
162
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
163
+ target_dtype = self.patch_embedding.weight.dtype
164
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
165
+ batch_size, _, height, width = patch_embeds.shape
166
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
167
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
168
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
169
+ position_embedding = torch.cat([
170
+ self.position_embedding[:, :1, :],
171
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
172
+ ], dim=1)
173
+ embeddings = embeddings + position_embedding.to(target_dtype)
174
+ return embeddings
175
+
176
+
177
+ class InternAttention(nn.Module):
178
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
179
+
180
+ def __init__(self, config: InternVisionConfig):
181
+ super().__init__()
182
+ self.config = config
183
+ self.embed_dim = config.hidden_size
184
+ self.num_heads = config.num_attention_heads
185
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
186
+ if config.use_flash_attn and not has_flash_attn:
187
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
188
+ self.head_dim = self.embed_dim // self.num_heads
189
+ if self.head_dim * self.num_heads != self.embed_dim:
190
+ raise ValueError(
191
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
192
+ f' {self.num_heads}).'
193
+ )
194
+
195
+ self.scale = self.head_dim ** -0.5
196
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
197
+ self.attn_drop = nn.Dropout(config.attention_dropout)
198
+ self.proj_drop = nn.Dropout(config.dropout)
199
+
200
+ self.qk_normalization = config.qk_normalization
201
+
202
+ if self.qk_normalization:
203
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
205
+
206
+ if self.use_flash_attn:
207
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
208
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
209
+
210
+ def _naive_attn(self, x):
211
+ B, N, C = x.shape
212
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
213
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
214
+
215
+ if self.qk_normalization:
216
+ B_, H_, N_, D_ = q.shape
217
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
219
+
220
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
221
+ attn = attn.softmax(dim=-1)
222
+ attn = self.attn_drop(attn)
223
+
224
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
225
+ x = self.proj(x)
226
+ x = self.proj_drop(x)
227
+ return x
228
+
229
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
230
+ qkv = self.qkv(x)
231
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
232
+
233
+ if self.qk_normalization:
234
+ q, k, v = qkv.unbind(2)
235
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
236
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
237
+ qkv = torch.stack([q, k, v], dim=2)
238
+
239
+ context, _ = self.inner_attn(
240
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
241
+ )
242
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
243
+ outs = self.proj_drop(outs)
244
+ return outs
245
+
246
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
247
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
248
+ return x
249
+
250
+
251
+ class InternMLP(nn.Module):
252
+ def __init__(self, config: InternVisionConfig):
253
+ super().__init__()
254
+ self.config = config
255
+ self.act = ACT2FN[config.hidden_act]
256
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
257
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
258
+
259
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
260
+ hidden_states = self.fc1(hidden_states)
261
+ hidden_states = self.act(hidden_states)
262
+ hidden_states = self.fc2(hidden_states)
263
+ return hidden_states
264
+
265
+
266
+ class InternVisionEncoderLayer(nn.Module):
267
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
268
+ super().__init__()
269
+ self.embed_dim = config.hidden_size
270
+ self.intermediate_size = config.intermediate_size
271
+ self.norm_type = config.norm_type
272
+
273
+ self.attn = InternAttention(config)
274
+ self.mlp = InternMLP(config)
275
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
277
+
278
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
280
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
282
+
283
+ def forward(
284
+ self,
285
+ hidden_states: torch.Tensor,
286
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
287
+ """
288
+ Args:
289
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
290
+ """
291
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
292
+
293
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
294
+
295
+ return hidden_states
296
+
297
+
298
+ class InternVisionEncoder(nn.Module):
299
+ """
300
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
301
+ [`InternEncoderLayer`].
302
+
303
+ Args:
304
+ config (`InternConfig`):
305
+ The corresponding vision configuration for the `InternEncoder`.
306
+ """
307
+
308
+ def __init__(self, config: InternVisionConfig):
309
+ super().__init__()
310
+ self.config = config
311
+ # stochastic depth decay rule
312
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
313
+ self.layers = nn.ModuleList([
314
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
315
+ self.gradient_checkpointing = True
316
+
317
+ def forward(
318
+ self,
319
+ inputs_embeds,
320
+ output_hidden_states: Optional[bool] = None,
321
+ return_dict: Optional[bool] = None,
322
+ ) -> Union[Tuple, BaseModelOutput]:
323
+ r"""
324
+ Args:
325
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
326
+ Embedded representation of the inputs. Should be float, not int tokens.
327
+ output_hidden_states (`bool`, *optional*):
328
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
329
+ for more detail.
330
+ return_dict (`bool`, *optional*):
331
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
332
+ """
333
+ output_hidden_states = (
334
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
335
+ )
336
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
337
+
338
+ encoder_states = () if output_hidden_states else None
339
+ hidden_states = inputs_embeds
340
+
341
+ for idx, encoder_layer in enumerate(self.layers):
342
+ if output_hidden_states:
343
+ encoder_states = encoder_states + (hidden_states,)
344
+ if self.gradient_checkpointing and self.training:
345
+ layer_outputs = torch.utils.checkpoint.checkpoint(
346
+ encoder_layer,
347
+ hidden_states)
348
+ else:
349
+ layer_outputs = encoder_layer(
350
+ hidden_states,
351
+ )
352
+ hidden_states = layer_outputs
353
+
354
+ if output_hidden_states:
355
+ encoder_states = encoder_states + (hidden_states,)
356
+
357
+ if not return_dict:
358
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
359
+ return BaseModelOutput(
360
+ last_hidden_state=hidden_states, hidden_states=encoder_states
361
+ )
362
+
363
+
364
+ class InternVisionModel(PreTrainedModel):
365
+ main_input_name = 'pixel_values'
366
+ _supports_flash_attn_2 = True
367
+ supports_gradient_checkpointing = True
368
+ config_class = InternVisionConfig
369
+ _no_split_modules = ['InternVisionEncoderLayer']
370
+
371
+ def __init__(self, config: InternVisionConfig):
372
+ super().__init__(config)
373
+ self.config = config
374
+
375
+ self.embeddings = InternVisionEmbeddings(config)
376
+ self.encoder = InternVisionEncoder(config)
377
+
378
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
379
+ pos_emb = self.embeddings.position_embedding
380
+ _, num_positions, embed_dim = pos_emb.shape
381
+ cls_emb = pos_emb[:, :1, :]
382
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
383
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
384
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
385
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
386
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
387
+ self.embeddings.image_size = new_size
388
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
389
+
390
+ def get_input_embeddings(self):
391
+ return self.embeddings
392
+
393
+ def forward(
394
+ self,
395
+ pixel_values: Optional[torch.FloatTensor] = None,
396
+ output_hidden_states: Optional[bool] = None,
397
+ return_dict: Optional[bool] = None,
398
+ pixel_embeds: Optional[torch.FloatTensor] = None,
399
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
400
+ output_hidden_states = (
401
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
402
+ )
403
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
404
+
405
+ if pixel_values is None and pixel_embeds is None:
406
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
407
+
408
+ if pixel_embeds is not None:
409
+ hidden_states = pixel_embeds
410
+ else:
411
+ if len(pixel_values.shape) == 4:
412
+ hidden_states = self.embeddings(pixel_values)
413
+ else:
414
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
415
+ encoder_outputs = self.encoder(
416
+ inputs_embeds=hidden_states,
417
+ output_hidden_states=output_hidden_states,
418
+ return_dict=return_dict,
419
+ )
420
+ last_hidden_state = encoder_outputs.last_hidden_state
421
+ pooled_output = last_hidden_state[:, 0, :]
422
+
423
+ if not return_dict:
424
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
425
+
426
+ return BaseModelOutputWithPooling(
427
+ last_hidden_state=last_hidden_state,
428
+ pooler_output=pooled_output,
429
+ hidden_states=encoder_outputs.hidden_states,
430
+ attentions=encoder_outputs.attentions,
431
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,564 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import math
8
+ import warnings
9
+ from typing import List, Optional, Tuple, Union
10
+
11
+ import torch.utils.checkpoint
12
+ import transformers
13
+ from torch import nn
14
+ from torch.nn import CrossEntropyLoss
15
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
16
+ Qwen2ForCausalLM)
17
+ from transformers.modeling_outputs import CausalLMOutputWithPast
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import ModelOutput, logging
20
+
21
+ from .configuration_internvl_chat import InternVLChatConfig
22
+ from .conversation import get_conv_template
23
+ from .modeling_intern_vit import InternVisionModel, has_flash_attn
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+
28
+ def version_cmp(v1, v2, op='eq'):
29
+ import operator
30
+
31
+ from packaging import version
32
+ op_func = getattr(operator, op)
33
+ return op_func(version.parse(v1), version.parse(v2))
34
+
35
+
36
+ class InternVLChatModel(PreTrainedModel):
37
+ config_class = InternVLChatConfig
38
+ main_input_name = 'pixel_values'
39
+ base_model_prefix = 'language_model'
40
+ _supports_flash_attn_2 = True
41
+ supports_gradient_checkpointing = True
42
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Qwen2DecoderLayer']
43
+
44
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
45
+ super().__init__(config)
46
+
47
+ assert version_cmp(transformers.__version__, '4.37.0', 'ge')
48
+ image_size = config.force_image_size or config.vision_config.image_size
49
+ patch_size = config.vision_config.patch_size
50
+ self.patch_size = patch_size
51
+ self.select_layer = config.select_layer
52
+ self.template = config.template
53
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
54
+ self.downsample_ratio = config.downsample_ratio
55
+ self.ps_version = config.ps_version
56
+ use_flash_attn = use_flash_attn if has_flash_attn else False
57
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
58
+ config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
59
+
60
+ logger.info(f'num_image_token: {self.num_image_token}')
61
+ logger.info(f'ps_version: {self.ps_version}')
62
+ if vision_model is not None:
63
+ self.vision_model = vision_model
64
+ else:
65
+ self.vision_model = InternVisionModel(config.vision_config)
66
+ if language_model is not None:
67
+ self.language_model = language_model
68
+ else:
69
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
70
+ self.language_model = LlamaForCausalLM(config.llm_config)
71
+ elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
72
+ self.language_model = Qwen2ForCausalLM(config.llm_config)
73
+ else:
74
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
75
+
76
+ vit_hidden_size = config.vision_config.hidden_size
77
+ llm_hidden_size = config.llm_config.hidden_size
78
+
79
+ self.mlp1 = nn.Sequential(
80
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
81
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
82
+ nn.GELU(),
83
+ nn.Linear(llm_hidden_size, llm_hidden_size)
84
+ )
85
+
86
+ self.img_context_token_id = None
87
+ self.conv_template = get_conv_template(self.template)
88
+ self.system_message = self.conv_template.system_message
89
+
90
+ def forward(
91
+ self,
92
+ pixel_values: torch.FloatTensor,
93
+ input_ids: torch.LongTensor = None,
94
+ attention_mask: Optional[torch.Tensor] = None,
95
+ position_ids: Optional[torch.LongTensor] = None,
96
+ image_flags: Optional[torch.LongTensor] = None,
97
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
98
+ labels: Optional[torch.LongTensor] = None,
99
+ use_cache: Optional[bool] = None,
100
+ output_attentions: Optional[bool] = None,
101
+ output_hidden_states: Optional[bool] = None,
102
+ return_dict: Optional[bool] = None,
103
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
104
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
105
+
106
+ image_flags = image_flags.squeeze(-1)
107
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
108
+
109
+ vit_embeds = self.extract_feature(pixel_values)
110
+ vit_embeds = vit_embeds[image_flags == 1]
111
+ vit_batch_size = pixel_values.shape[0]
112
+
113
+ B, N, C = input_embeds.shape
114
+ input_embeds = input_embeds.reshape(B * N, C)
115
+
116
+ if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
117
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
118
+
119
+ input_ids = input_ids.reshape(B * N)
120
+ selected = (input_ids == self.img_context_token_id)
121
+ try:
122
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
123
+ except Exception as e:
124
+ vit_embeds = vit_embeds.reshape(-1, C)
125
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
126
+ f'vit_embeds.shape={vit_embeds.shape}')
127
+ n_token = selected.sum()
128
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
129
+
130
+ input_embeds = input_embeds.reshape(B, N, C)
131
+
132
+ outputs = self.language_model(
133
+ inputs_embeds=input_embeds,
134
+ attention_mask=attention_mask,
135
+ position_ids=position_ids,
136
+ past_key_values=past_key_values,
137
+ use_cache=use_cache,
138
+ output_attentions=output_attentions,
139
+ output_hidden_states=output_hidden_states,
140
+ return_dict=return_dict,
141
+ )
142
+ logits = outputs.logits
143
+
144
+ loss = None
145
+ if labels is not None:
146
+ # Shift so that tokens < n predict n
147
+ shift_logits = logits[..., :-1, :].contiguous()
148
+ shift_labels = labels[..., 1:].contiguous()
149
+ # Flatten the tokens
150
+ loss_fct = CrossEntropyLoss()
151
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
152
+ shift_labels = shift_labels.view(-1)
153
+ # Enable model parallelism
154
+ shift_labels = shift_labels.to(shift_logits.device)
155
+ loss = loss_fct(shift_logits, shift_labels)
156
+
157
+ if not return_dict:
158
+ output = (logits,) + outputs[1:]
159
+ return (loss,) + output if loss is not None else output
160
+
161
+ return CausalLMOutputWithPast(
162
+ loss=loss,
163
+ logits=logits,
164
+ past_key_values=outputs.past_key_values,
165
+ hidden_states=outputs.hidden_states,
166
+ attentions=outputs.attentions,
167
+ )
168
+
169
+ def pixel_shuffle(self, x, scale_factor=0.5):
170
+ n, w, h, c = x.size()
171
+ # N, W, H, C --> N, W, H * scale, C // scale
172
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
173
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
174
+ x = x.permute(0, 2, 1, 3).contiguous()
175
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
176
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
177
+ int(c / (scale_factor * scale_factor)))
178
+ if self.ps_version == 'v1':
179
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
180
+ 'which results in a transposed image.')
181
+ else:
182
+ x = x.permute(0, 2, 1, 3).contiguous()
183
+ return x
184
+
185
+ def extract_feature(self, pixel_values):
186
+ if self.select_layer == -1:
187
+ vit_embeds = self.vision_model(
188
+ pixel_values=pixel_values,
189
+ output_hidden_states=False,
190
+ return_dict=True).last_hidden_state
191
+ else:
192
+ vit_embeds = self.vision_model(
193
+ pixel_values=pixel_values,
194
+ output_hidden_states=True,
195
+ return_dict=True).hidden_states[self.select_layer]
196
+ vit_embeds = vit_embeds[:, 1:, :]
197
+
198
+ h = w = int(vit_embeds.shape[1] ** 0.5)
199
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
200
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
201
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
202
+ vit_embeds = self.mlp1(vit_embeds)
203
+ return vit_embeds
204
+
205
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
206
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
207
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
208
+ if history is not None or return_history:
209
+ print('Now multi-turn chat is not supported in batch_chat.')
210
+ raise NotImplementedError
211
+
212
+ if image_counts is not None:
213
+ num_patches_list = image_counts
214
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
215
+
216
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
217
+ self.img_context_token_id = img_context_token_id
218
+
219
+ if verbose and pixel_values is not None:
220
+ image_bs = pixel_values.shape[0]
221
+ print(f'dynamic ViT batch size: {image_bs}')
222
+
223
+ queries = []
224
+ for idx, num_patches in enumerate(num_patches_list):
225
+ question = questions[idx]
226
+ if pixel_values is not None and '<image>' not in question:
227
+ question = '<image>\n' + question
228
+ template = get_conv_template(self.template)
229
+ template.system_message = self.system_message
230
+ template.append_message(template.roles[0], question)
231
+ template.append_message(template.roles[1], None)
232
+ query = template.get_prompt()
233
+
234
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
235
+ query = query.replace('<image>', image_tokens, 1)
236
+ queries.append(query)
237
+
238
+ tokenizer.padding_side = 'left'
239
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
240
+ input_ids = model_inputs['input_ids'].to(self.device)
241
+ attention_mask = model_inputs['attention_mask'].to(self.device)
242
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
243
+ generation_config['eos_token_id'] = eos_token_id
244
+ generation_output = self.generate(
245
+ pixel_values=pixel_values,
246
+ input_ids=input_ids,
247
+ attention_mask=attention_mask,
248
+ **generation_config
249
+ )
250
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
251
+ responses = [response.split(template.sep.strip())[0].strip() for response in responses]
252
+ return responses
253
+
254
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
255
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
256
+ verbose=False):
257
+
258
+ if history is None and pixel_values is not None and '<image>' not in question:
259
+ question = '<image>\n' + question
260
+
261
+ if num_patches_list is None:
262
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
263
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
264
+
265
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
266
+ self.img_context_token_id = img_context_token_id
267
+
268
+ template = get_conv_template(self.template)
269
+ template.system_message = self.system_message
270
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
271
+
272
+ history = [] if history is None else history
273
+ for (old_question, old_answer) in history:
274
+ template.append_message(template.roles[0], old_question)
275
+ template.append_message(template.roles[1], old_answer)
276
+ template.append_message(template.roles[0], question)
277
+ template.append_message(template.roles[1], None)
278
+ query = template.get_prompt()
279
+
280
+ if verbose and pixel_values is not None:
281
+ image_bs = pixel_values.shape[0]
282
+ print(f'dynamic ViT batch size: {image_bs}')
283
+
284
+ for num_patches in num_patches_list:
285
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
286
+ query = query.replace('<image>', image_tokens, 1)
287
+
288
+ model_inputs = tokenizer(query, return_tensors='pt')
289
+ input_ids = model_inputs['input_ids'].to(self.device)
290
+ attention_mask = model_inputs['attention_mask'].to(self.device)
291
+ generation_config['eos_token_id'] = eos_token_id
292
+ generation_output = self.generate(
293
+ pixel_values=pixel_values,
294
+ input_ids=input_ids,
295
+ attention_mask=attention_mask,
296
+ **generation_config
297
+ )
298
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
299
+ response = response.split(template.sep.strip())[0].strip()
300
+ history.append((question, response))
301
+ if return_history:
302
+ return response, history
303
+ else:
304
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
305
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
306
+ if verbose:
307
+ print(query_to_print, response)
308
+ return response
309
+
310
+ @torch.no_grad()
311
+ def generate(
312
+ self,
313
+ pixel_values: Optional[torch.FloatTensor] = None,
314
+ input_ids: Optional[torch.FloatTensor] = None,
315
+ attention_mask: Optional[torch.LongTensor] = None,
316
+ visual_features: Optional[torch.FloatTensor] = None,
317
+ generation_config: Optional[GenerationConfig] = None,
318
+ output_hidden_states: Optional[bool] = None,
319
+ **generate_kwargs,
320
+ ) -> torch.LongTensor:
321
+
322
+ assert self.img_context_token_id is not None
323
+ if pixel_values is not None:
324
+ if visual_features is not None:
325
+ vit_embeds = visual_features
326
+ else:
327
+ vit_embeds = self.extract_feature(pixel_values)
328
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
329
+ B, N, C = input_embeds.shape
330
+ input_embeds = input_embeds.reshape(B * N, C)
331
+
332
+ input_ids = input_ids.reshape(B * N)
333
+ selected = (input_ids == self.img_context_token_id)
334
+ assert selected.sum() != 0
335
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
336
+
337
+ input_embeds = input_embeds.reshape(B, N, C)
338
+ else:
339
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
340
+
341
+ outputs = self.language_model.generate(
342
+ inputs_embeds=input_embeds,
343
+ attention_mask=attention_mask,
344
+ generation_config=generation_config,
345
+ output_hidden_states=output_hidden_states,
346
+ use_cache=True,
347
+ **generate_kwargs,
348
+ )
349
+
350
+ return outputs
351
+
352
+ @property
353
+ def lm_head(self):
354
+ return self.language_model.get_output_embeddings()
355
+
356
+ def get_input_embeddings(self):
357
+ return self.language_model.get_input_embeddings()
358
+
359
+ def get_output_embeddings(self):
360
+ return self.language_model.get_output_embeddings()
361
+
362
+
363
+ class InternVLRewardModel(InternVLChatModel):
364
+ @staticmethod
365
+ def split_response(response, sep='\n\n', max_steps=None):
366
+ steps = response.split(sep)
367
+
368
+ if max_steps is not None:
369
+ step = math.ceil(len(steps) / max_steps)
370
+ new_steps = []
371
+ for i in range(0, len(steps), step):
372
+ new_steps.append(sep.join(steps[i:i+step]))
373
+ return new_steps
374
+
375
+ return steps
376
+
377
+ @staticmethod
378
+ def join_steps(steps, sep='\n\n'):
379
+ return sep.join(steps)
380
+
381
+ def find_placeholder_idx(self, tokenizer, input_ids, PLACEHOLDER):
382
+ # TODO: support batch inference
383
+ input_ids = input_ids[0].tolist()
384
+ template = get_conv_template(self.template)
385
+
386
+ idx = []
387
+ bos = tokenizer(template.roles[1], add_special_tokens=False).input_ids
388
+ target = tokenizer(template.roles[1] + PLACEHOLDER + template.sep, add_special_tokens=False).input_ids
389
+ for i in range(len(input_ids)):
390
+ if input_ids[i:i+len(target)] == target:
391
+ assert i + len(bos) - 1 >= 0
392
+ idx.append(i + len(bos) - 1)
393
+
394
+ return idx
395
+
396
+ def generate_steps_with_soft_score(
397
+ self,
398
+ tokenizer,
399
+ question,
400
+ response,
401
+ pixel_values,
402
+ num_patches_list=None,
403
+ max_steps=None,
404
+ IMG_START_TOKEN='<img>',
405
+ IMG_END_TOKEN='</img>',
406
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
407
+ PLACEHOLDER=None,
408
+ str2score=None,
409
+ ):
410
+ if str2score is None:
411
+ str2score = {'+': 1, '-': 0}
412
+
413
+ if PLACEHOLDER is None:
414
+ PLACEHOLDER = '+'
415
+
416
+ if pixel_values is not None and '<image>' not in question:
417
+ num_images = 1 if num_patches_list is None else len(num_patches_list)
418
+ question = '<image>\n' * num_images + question
419
+
420
+ if num_patches_list is None:
421
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
422
+
423
+ assert pixel_values is None or (len(pixel_values) == sum(num_patches_list) and len(num_patches_list) == question.count('<image>')), f'{len(pixel_values)=}, {sum(num_patches_list)=}, {len(num_patches_list)}, {question=}'
424
+
425
+ image_input = pixel_values is not None
426
+ if pixel_values is None:
427
+ pixel_values = torch.zeros(1, 3, self.config.vision_config.image_size, self.config.vision_config.image_size).to(self.device).to(torch.bfloat16)
428
+
429
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
430
+ self.img_context_token_id = img_context_token_id
431
+
432
+ candidate_tokens = []
433
+ candidate_weights = []
434
+
435
+ if isinstance(response, str):
436
+ steps = self.split_response(response, max_steps=max_steps)
437
+ else:
438
+ steps = response
439
+
440
+ # Prepare Query
441
+ for k, v in str2score.items():
442
+ k_id = tokenizer.convert_tokens_to_ids(k)
443
+ assert k_id != tokenizer.unk_token_id
444
+
445
+ candidate_tokens.append(k_id)
446
+ candidate_weights.append(v)
447
+
448
+ template = get_conv_template(self.template)
449
+ template.system_message = self.system_message
450
+
451
+ for step_idx, step in enumerate(steps):
452
+ if step_idx == 0:
453
+ step = f'### Question:\n{question}\n\n### Solution Process:\n{step}'
454
+ template.append_message(template.roles[0], step)
455
+ template.append_message(template.roles[1], PLACEHOLDER)
456
+ query = template.get_prompt()
457
+
458
+ for num_patches in num_patches_list:
459
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
460
+ query = query.replace('<image>', image_tokens, 1)
461
+
462
+ # Prepare inputs
463
+ model_inputs = tokenizer(query, return_tensors='pt')
464
+ # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
465
+ device = self.device
466
+ input_ids = model_inputs['input_ids'].to(device)
467
+ attention_mask = model_inputs['attention_mask'].to(device)
468
+ image_flags = torch.tensor([image_input] * pixel_values.size(0), dtype=torch.long).to(device)
469
+
470
+ # Forward
471
+ idx = self.find_placeholder_idx(tokenizer, input_ids, PLACEHOLDER=PLACEHOLDER)
472
+ logits = self(
473
+ pixel_values=pixel_values,
474
+ input_ids=input_ids,
475
+ attention_mask=attention_mask,
476
+ image_flags=image_flags,
477
+ ).logits
478
+ logits = logits[0][idx, :][:, candidate_tokens]
479
+ soft_scores = logits.softmax(dim=-1).tolist()
480
+
481
+ assert len(soft_scores) == len(steps)
482
+
483
+ # Gather step scores
484
+ steps_with_score = []
485
+ for soft_score, step in zip(soft_scores, steps):
486
+ score = 0
487
+ for s, w in zip(soft_score, candidate_weights):
488
+ score += s * w
489
+ steps_with_score.append({'step': step, 'score': score})
490
+ return steps_with_score
491
+
492
+ def generate_overall_score(self, steps_with_score, func=sum):
493
+ overall_score = []
494
+ for step in steps_with_score:
495
+ curr_score = step['score']
496
+ overall_score.append(curr_score)
497
+
498
+ return func(overall_score)
499
+
500
+ @torch.inference_mode()
501
+ def select_best_response(
502
+ self,
503
+ tokenizer,
504
+ question,
505
+ response_list,
506
+ pixel_values=None,
507
+ num_patches_list=None,
508
+ max_steps=12,
509
+ gather_func=None,
510
+ str2score=None,
511
+ return_scores=False,
512
+ ):
513
+ if gather_func is None:
514
+ gather_func = lambda x:sum(x)/len(x)
515
+
516
+ sorted_response_list = []
517
+
518
+ for response in response_list:
519
+ steps_with_score = self.generate_steps_with_soft_score(
520
+ tokenizer=tokenizer,
521
+ question=question,
522
+ response=response,
523
+ pixel_values=pixel_values,
524
+ num_patches_list=num_patches_list,
525
+ max_steps=max_steps,
526
+ str2score=str2score,
527
+ )
528
+ overall_score = self.generate_overall_score(steps_with_score, func=gather_func)
529
+ sorted_response_list.append((response, overall_score))
530
+
531
+ sorted_response_list = sorted(sorted_response_list, key=lambda x:x[1], reverse=True)
532
+
533
+ if return_scores:
534
+ return sorted_response_list
535
+ return [item[0] for item in sorted_response_list]
536
+
537
+ @torch.inference_mode()
538
+ def check_correctness(
539
+ self,
540
+ tokenizer,
541
+ question,
542
+ response_list,
543
+ pixel_values,
544
+ num_patches_list=None,
545
+ max_steps=12,
546
+ threshold=0.8,
547
+ str2score=None,
548
+ ):
549
+ correctness_list = []
550
+
551
+ for response in response_list:
552
+ steps_with_score = self.generate_steps_with_soft_score(
553
+ tokenizer=tokenizer,
554
+ question=question,
555
+ response=response,
556
+ pixel_values=pixel_values,
557
+ num_patches_list=num_patches_list,
558
+ max_steps=max_steps,
559
+ str2score=str2score,
560
+ )
561
+ correctness = [1 if step_with_score['score'] > threshold else -1 for step_with_score in steps_with_score]
562
+ correctness_list.append(correctness)
563
+
564
+ return correctness_list
preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 448,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.485,
9
+ 0.456,
10
+ 0.406
11
+ ],
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 3,
18
+ "size": 448
19
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|im_start|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "151645": {
23
+ "content": "<|im_end|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "151646": {
31
+ "content": "<|object_ref_start|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|object_ref_end|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "151648": {
47
+ "content": "<|box_start|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "151649": {
55
+ "content": "<|box_end|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "151665": {
183
+ "content": "<img>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ },
190
+ "151666": {
191
+ "content": "</img>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": true
197
+ },
198
+ "151667": {
199
+ "content": "<IMG_CONTEXT>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": true
205
+ },
206
+ "151668": {
207
+ "content": "<quad>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": true
213
+ },
214
+ "151669": {
215
+ "content": "</quad>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": true
221
+ },
222
+ "151670": {
223
+ "content": "<ref>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "151671": {
231
+ "content": "</ref>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": true
237
+ },
238
+ "151672": {
239
+ "content": "<box>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": false,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "151673": {
247
+ "content": "</box>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": false,
251
+ "single_word": false,
252
+ "special": true
253
+ }
254
+ },
255
+ "additional_special_tokens": [
256
+ "<|im_start|>",
257
+ "<|im_end|>",
258
+ "<|object_ref_start|>",
259
+ "<|object_ref_end|>",
260
+ "<|box_start|>",
261
+ "<|box_end|>",
262
+ "<|quad_start|>",
263
+ "<|quad_end|>",
264
+ "<|vision_start|>",
265
+ "<|vision_end|>",
266
+ "<|vision_pad|>",
267
+ "<|image_pad|>",
268
+ "<|video_pad|>"
269
+ ],
270
+ "bos_token": null,
271
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
272
+ "clean_up_tokenization_spaces": false,
273
+ "eos_token": "<|im_end|>",
274
+ "errors": "replace",
275
+ "extra_special_tokens": {},
276
+ "model_max_length": 16384,
277
+ "pad_token": "<|endoftext|>",
278
+ "split_special_tokens": false,
279
+ "tokenizer_class": "Qwen2Tokenizer",
280
+ "unk_token": null
281
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff