Upload 5 files
Browse files- Kaggle Notebook.ipynb +821 -0
- Kaggle Output Data 2.csv +21 -0
- My Model.pth +3 -0
- My Model.safetensors +3 -0
- Readme.md +9 -0
Kaggle Notebook.ipynb
ADDED
@@ -0,0 +1,821 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {
|
7 |
+
"execution": {
|
8 |
+
"iopub.execute_input": "2025-04-04T12:54:49.334286Z",
|
9 |
+
"iopub.status.busy": "2025-04-04T12:54:49.333816Z",
|
10 |
+
"iopub.status.idle": "2025-04-04T12:54:49.973500Z",
|
11 |
+
"shell.execute_reply": "2025-04-04T12:54:49.972489Z",
|
12 |
+
"shell.execute_reply.started": "2025-04-04T12:54:49.334258Z"
|
13 |
+
},
|
14 |
+
"trusted": true
|
15 |
+
},
|
16 |
+
"outputs": [
|
17 |
+
{
|
18 |
+
"name": "stdout",
|
19 |
+
"output_type": "stream",
|
20 |
+
"text": [
|
21 |
+
"Path to dataset files: /kaggle/input/cifake-real-and-ai-generated-synthetic-images\n"
|
22 |
+
]
|
23 |
+
}
|
24 |
+
],
|
25 |
+
"source": [
|
26 |
+
"import kagglehub\n",
|
27 |
+
"path = kagglehub.dataset_download(\"birdy654/cifake-real-and-ai-generated-synthetic-images\")\n",
|
28 |
+
"print(\"Path to dataset files:\", path)"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": 3,
|
34 |
+
"metadata": {
|
35 |
+
"execution": {
|
36 |
+
"iopub.execute_input": "2025-04-04T12:54:51.497912Z",
|
37 |
+
"iopub.status.busy": "2025-04-04T12:54:51.497571Z",
|
38 |
+
"iopub.status.idle": "2025-04-04T12:54:51.503484Z",
|
39 |
+
"shell.execute_reply": "2025-04-04T12:54:51.502691Z",
|
40 |
+
"shell.execute_reply.started": "2025-04-04T12:54:51.497884Z"
|
41 |
+
},
|
42 |
+
"trusted": true
|
43 |
+
},
|
44 |
+
"outputs": [
|
45 |
+
{
|
46 |
+
"data": {
|
47 |
+
"text/plain": [
|
48 |
+
"'/kaggle/input/cifake-real-and-ai-generated-synthetic-images'"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
"execution_count": 3,
|
52 |
+
"metadata": {},
|
53 |
+
"output_type": "execute_result"
|
54 |
+
}
|
55 |
+
],
|
56 |
+
"source": [
|
57 |
+
"path"
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "code",
|
62 |
+
"execution_count": 4,
|
63 |
+
"metadata": {
|
64 |
+
"execution": {
|
65 |
+
"iopub.execute_input": "2025-04-04T12:54:52.950084Z",
|
66 |
+
"iopub.status.busy": "2025-04-04T12:54:52.949766Z",
|
67 |
+
"iopub.status.idle": "2025-04-04T12:54:53.085522Z",
|
68 |
+
"shell.execute_reply": "2025-04-04T12:54:53.084690Z",
|
69 |
+
"shell.execute_reply.started": "2025-04-04T12:54:52.950059Z"
|
70 |
+
},
|
71 |
+
"trusted": true
|
72 |
+
},
|
73 |
+
"outputs": [
|
74 |
+
{
|
75 |
+
"name": "stdout",
|
76 |
+
"output_type": "stream",
|
77 |
+
"text": [
|
78 |
+
"\u001b[0m\u001b[01;34mtest\u001b[0m/ \u001b[01;34mtrain\u001b[0m/\n"
|
79 |
+
]
|
80 |
+
}
|
81 |
+
],
|
82 |
+
"source": [
|
83 |
+
"ls '/kaggle/input/cifake-real-and-ai-generated-synthetic-images'"
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"cell_type": "code",
|
88 |
+
"execution_count": null,
|
89 |
+
"metadata": {
|
90 |
+
"_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
|
91 |
+
"_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
|
92 |
+
"execution": {
|
93 |
+
"iopub.execute_input": "2025-04-04T12:54:54.425136Z",
|
94 |
+
"iopub.status.busy": "2025-04-04T12:54:54.424819Z",
|
95 |
+
"iopub.status.idle": "2025-04-04T12:54:54.436446Z",
|
96 |
+
"shell.execute_reply": "2025-04-04T12:54:54.435720Z",
|
97 |
+
"shell.execute_reply.started": "2025-04-04T12:54:54.425108Z"
|
98 |
+
},
|
99 |
+
"trusted": true
|
100 |
+
},
|
101 |
+
"outputs": [],
|
102 |
+
"source": [
|
103 |
+
"import os\n",
|
104 |
+
"import glob\n",
|
105 |
+
"\n",
|
106 |
+
"data_dir = str(path)\n",
|
107 |
+
"\n",
|
108 |
+
"training_dir = os.path.join(data_dir,\"train\")\n",
|
109 |
+
"if not os.path.isdir(training_dir):\n",
|
110 |
+
" os.mkdir(training_dir)\n",
|
111 |
+
"\n",
|
112 |
+
"dog_training_dir = os.path.join(training_dir,\"REAL\")\n",
|
113 |
+
"if not os.path.isdir(dog_training_dir):\n",
|
114 |
+
" os.mkdir(dog_training_dir)\n",
|
115 |
+
"\n",
|
116 |
+
"\n",
|
117 |
+
"cat_training_dir = os.path.join(training_dir,\"FAKE\")\n",
|
118 |
+
"if not os.path.isdir(cat_training_dir):\n",
|
119 |
+
" os.mkdir(cat_training_dir)\n",
|
120 |
+
"\n",
|
121 |
+
"\n",
|
122 |
+
"validation_dir = os.path.join(data_dir,\"test\")\n",
|
123 |
+
"if not os.path.isdir(validation_dir):\n",
|
124 |
+
" os.mkdir(validation_dir)\n",
|
125 |
+
"\n",
|
126 |
+
"dog_validation_dir = os.path.join(validation_dir,\"REAL\")\n",
|
127 |
+
"if not os.path.isdir(dog_validation_dir):\n",
|
128 |
+
" os.mkdir(dog_validation_dir)\n",
|
129 |
+
"\n",
|
130 |
+
"\n",
|
131 |
+
"cat_validation_dir = os.path.join(validation_dir,\"FAKE\")\n",
|
132 |
+
"if not os.path.isdir(cat_validation_dir):\n",
|
133 |
+
" os.mkdir(cat_validation_dir)"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": 6,
|
139 |
+
"metadata": {
|
140 |
+
"execution": {
|
141 |
+
"iopub.execute_input": "2025-04-04T12:54:57.162476Z",
|
142 |
+
"iopub.status.busy": "2025-04-04T12:54:57.162155Z",
|
143 |
+
"iopub.status.idle": "2025-04-04T12:54:57.169644Z",
|
144 |
+
"shell.execute_reply": "2025-04-04T12:54:57.168755Z",
|
145 |
+
"shell.execute_reply.started": "2025-04-04T12:54:57.162453Z"
|
146 |
+
},
|
147 |
+
"trusted": true
|
148 |
+
},
|
149 |
+
"outputs": [],
|
150 |
+
"source": [
|
151 |
+
"import shutil\n",
|
152 |
+
"\n",
|
153 |
+
"split_size = 0.80\n",
|
154 |
+
"cat_imgs_size = len(glob.glob(\"/content/data/train/FAKE*\"))\n",
|
155 |
+
"dog_imgs_size = len(glob.glob(\"/content/data/train/REAL*\"))\n",
|
156 |
+
"\n",
|
157 |
+
"for i,img in enumerate(glob.glob(\"/content/data/train/FAKE*\")):\n",
|
158 |
+
" if i < (cat_imgs_size * split_size):\n",
|
159 |
+
" shutil.move(img,cat_training_dir)\n",
|
160 |
+
" else:\n",
|
161 |
+
" shutil.move(img,cat_validation_dir)\n",
|
162 |
+
"\n",
|
163 |
+
"for i,img in enumerate(glob.glob(\"/content/data/train/REAL*\")):\n",
|
164 |
+
" if i < (dog_imgs_size * split_size):\n",
|
165 |
+
" shutil.move(img,dog_training_dir)\n",
|
166 |
+
" else:\n",
|
167 |
+
" shutil.move(img,dog_validation_dir)"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": null,
|
173 |
+
"metadata": {
|
174 |
+
"execution": {
|
175 |
+
"iopub.execute_input": "2025-04-04T12:55:00.489855Z",
|
176 |
+
"iopub.status.busy": "2025-04-04T12:55:00.489560Z",
|
177 |
+
"iopub.status.idle": "2025-04-04T12:56:01.137810Z",
|
178 |
+
"shell.execute_reply": "2025-04-04T12:56:01.137109Z",
|
179 |
+
"shell.execute_reply.started": "2025-04-04T12:55:00.489835Z"
|
180 |
+
},
|
181 |
+
"trusted": true
|
182 |
+
},
|
183 |
+
"outputs": [],
|
184 |
+
"source": [
|
185 |
+
"import torch\n",
|
186 |
+
"import torchvision\n",
|
187 |
+
"from torchvision import datasets, transforms\n",
|
188 |
+
"\n",
|
189 |
+
"traindir = path+\"/train\"\n",
|
190 |
+
"testdir = path+\"/test\"\n",
|
191 |
+
"\n",
|
192 |
+
"train_transforms = transforms.Compose([transforms.Resize((224,224)),\n",
|
193 |
+
" transforms.ToTensor(), \n",
|
194 |
+
" torchvision.transforms.Normalize(\n",
|
195 |
+
" mean=[0.485, 0.456, 0.406],\n",
|
196 |
+
" std=[0.229, 0.224, 0.225],\n",
|
197 |
+
" ),\n",
|
198 |
+
" ])\n",
|
199 |
+
"test_transforms = transforms.Compose([transforms.Resize((224,224)),\n",
|
200 |
+
" transforms.ToTensor(),\n",
|
201 |
+
" torchvision.transforms.Normalize(\n",
|
202 |
+
" mean=[0.485, 0.456, 0.406],\n",
|
203 |
+
" std=[0.229, 0.224, 0.225],\n",
|
204 |
+
" ),\n",
|
205 |
+
" ])\n",
|
206 |
+
"\n",
|
207 |
+
"train_data = datasets.ImageFolder(traindir,transform=train_transforms)\n",
|
208 |
+
"test_data = datasets.ImageFolder(testdir,transform=test_transforms)\n",
|
209 |
+
"\n",
|
210 |
+
"trainloader = torch.utils.data.DataLoader(train_data, shuffle = True, batch_size=16)\n",
|
211 |
+
"testloader = torch.utils.data.DataLoader(test_data, shuffle = True, batch_size=16)\n"
|
212 |
+
]
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"cell_type": "code",
|
216 |
+
"execution_count": null,
|
217 |
+
"metadata": {
|
218 |
+
"execution": {
|
219 |
+
"iopub.execute_input": "2025-04-04T12:56:11.815228Z",
|
220 |
+
"iopub.status.busy": "2025-04-04T12:56:11.814667Z",
|
221 |
+
"iopub.status.idle": "2025-04-04T12:56:11.820038Z",
|
222 |
+
"shell.execute_reply": "2025-04-04T12:56:11.818970Z",
|
223 |
+
"shell.execute_reply.started": "2025-04-04T12:56:11.815175Z"
|
224 |
+
},
|
225 |
+
"trusted": true
|
226 |
+
},
|
227 |
+
"outputs": [],
|
228 |
+
"source": [
|
229 |
+
"def make_train_step(model, optimizer, loss_fn):\n",
|
230 |
+
" def train_step(x,y):\n",
|
231 |
+
" yhat = model(x)\n",
|
232 |
+
" model.train()\n",
|
233 |
+
" loss = loss_fn(yhat,y)\n",
|
234 |
+
"\n",
|
235 |
+
" loss.backward()\n",
|
236 |
+
" optimizer.step()\n",
|
237 |
+
" optimizer.zero_grad()\n",
|
238 |
+
" #optimizer.cleargrads()\n",
|
239 |
+
"\n",
|
240 |
+
" return loss\n",
|
241 |
+
" return train_step"
|
242 |
+
]
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"cell_type": "code",
|
246 |
+
"execution_count": null,
|
247 |
+
"metadata": {
|
248 |
+
"execution": {
|
249 |
+
"iopub.execute_input": "2025-04-04T12:56:24.422670Z",
|
250 |
+
"iopub.status.busy": "2025-04-04T12:56:24.422329Z",
|
251 |
+
"iopub.status.idle": "2025-04-04T12:56:24.664399Z",
|
252 |
+
"shell.execute_reply": "2025-04-04T12:56:24.663683Z",
|
253 |
+
"shell.execute_reply.started": "2025-04-04T12:56:24.422644Z"
|
254 |
+
},
|
255 |
+
"trusted": true
|
256 |
+
},
|
257 |
+
"outputs": [],
|
258 |
+
"source": [
|
259 |
+
"from torchvision import datasets, models, transforms\n",
|
260 |
+
"import torch.nn as nn\n",
|
261 |
+
"\n",
|
262 |
+
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
263 |
+
"model = models.resnet18(pretrained=True)\n",
|
264 |
+
"\n",
|
265 |
+
"for params in model.parameters():\n",
|
266 |
+
" params.requires_grad_ = False\n",
|
267 |
+
"\n",
|
268 |
+
"nr_filters = model.fc.in_features \n",
|
269 |
+
"model.fc = nn.Linear(nr_filters, 1)\n",
|
270 |
+
"\n",
|
271 |
+
"model = model.to(device)"
|
272 |
+
]
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"cell_type": "code",
|
276 |
+
"execution_count": null,
|
277 |
+
"metadata": {
|
278 |
+
"execution": {
|
279 |
+
"iopub.execute_input": "2025-04-04T12:56:26.628077Z",
|
280 |
+
"iopub.status.busy": "2025-04-04T12:56:26.627763Z",
|
281 |
+
"iopub.status.idle": "2025-04-04T12:56:26.632616Z",
|
282 |
+
"shell.execute_reply": "2025-04-04T12:56:26.631736Z",
|
283 |
+
"shell.execute_reply.started": "2025-04-04T12:56:26.628054Z"
|
284 |
+
},
|
285 |
+
"trusted": true
|
286 |
+
},
|
287 |
+
"outputs": [],
|
288 |
+
"source": [
|
289 |
+
"from torch.nn.modules.loss import BCEWithLogitsLoss\n",
|
290 |
+
"from torch.optim import lr_scheduler\n",
|
291 |
+
"\n",
|
292 |
+
"loss_fn = BCEWithLogitsLoss()\n",
|
293 |
+
"optimizer = torch.optim.Adam(model.fc.parameters()) \n",
|
294 |
+
"\n",
|
295 |
+
"train_step = make_train_step(model, optimizer, loss_fn)"
|
296 |
+
]
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"cell_type": "code",
|
300 |
+
"execution_count": null,
|
301 |
+
"metadata": {
|
302 |
+
"execution": {
|
303 |
+
"iopub.execute_input": "2025-04-04T12:56:29.126146Z",
|
304 |
+
"iopub.status.busy": "2025-04-04T12:56:29.125852Z",
|
305 |
+
"iopub.status.idle": "2025-04-04T12:57:41.905138Z",
|
306 |
+
"shell.execute_reply": "2025-04-04T12:57:41.904311Z",
|
307 |
+
"shell.execute_reply.started": "2025-04-04T12:56:29.126124Z"
|
308 |
+
},
|
309 |
+
"trusted": true
|
310 |
+
},
|
311 |
+
"outputs": [
|
312 |
+
{
|
313 |
+
"ename": "KeyboardInterrupt",
|
314 |
+
"evalue": "",
|
315 |
+
"output_type": "error",
|
316 |
+
"traceback": [
|
317 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
318 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
319 |
+
"\u001b[0;32m<ipython-input-12-fecf91831327>\u001b[0m in \u001b[0;36m<cell line: 19>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# Set model to train mode\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 26\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrainloader\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtotal\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrainloader\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 27\u001b[0m \u001b[0mx_batch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_batch\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 28\u001b[0m \u001b[0mx_batch\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mx_batch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdevice\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
320 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/tqdm/std.py\u001b[0m in \u001b[0;36m__iter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1179\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1180\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1181\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mobj\u001b[0m \u001b[0;32min\u001b[0m \u001b[0miterable\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1182\u001b[0m \u001b[0;32myield\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1183\u001b[0m \u001b[0;31m# Update and possibly print the progressbar.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
321 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py\u001b[0m in \u001b[0;36m__next__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 699\u001b[0m \u001b[0;31m# TODO(https://github.com/pytorch/pytorch/issues/76750)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 700\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# type: ignore[call-arg]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 701\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_next_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 702\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_num_yielded\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 703\u001b[0m if (\n",
|
322 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py\u001b[0m in \u001b[0;36m_next_data\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 755\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_next_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 756\u001b[0m \u001b[0mindex\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_next_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# may raise StopIteration\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 757\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_dataset_fetcher\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfetch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# may raise StopIteration\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 758\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_pin_memory\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 759\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_utils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpin_memory\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpin_memory\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_pin_memory_device\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
323 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/utils/data/_utils/fetch.py\u001b[0m in \u001b[0;36mfetch\u001b[0;34m(self, possibly_batched_index)\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getitems__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 52\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0midx\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0midx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 53\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
324 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/utils/data/_utils/fetch.py\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getitems__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 52\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0midx\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0midx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 53\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
325 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torchvision/datasets/folder.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, index)\u001b[0m\n\u001b[1;32m 243\u001b[0m \"\"\"\n\u001b[1;32m 244\u001b[0m \u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msamples\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 245\u001b[0;31m \u001b[0msample\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 246\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 247\u001b[0m \u001b[0msample\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msample\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
326 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torchvision/datasets/folder.py\u001b[0m in \u001b[0;36mdefault_loader\u001b[0;34m(path)\u001b[0m\n\u001b[1;32m 282\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0maccimage_loader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 283\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 284\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mpil_loader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 285\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 286\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
327 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torchvision/datasets/folder.py\u001b[0m in \u001b[0;36mpil_loader\u001b[0;34m(path)\u001b[0m\n\u001b[1;32m 261\u001b[0m \u001b[0;31m# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 262\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"rb\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 263\u001b[0;31m \u001b[0mimg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 264\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mimg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvert\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"RGB\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 265\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
328 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/PIL/Image.py\u001b[0m in \u001b[0;36mopen\u001b[0;34m(fp, mode, formats)\u001b[0m\n\u001b[1;32m 3478\u001b[0m \u001b[0mexclusive_fp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3479\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3480\u001b[0;31m \u001b[0mprefix\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m16\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3481\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3482\u001b[0m \u001b[0mpreinit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
329 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
330 |
+
]
|
331 |
+
}
|
332 |
+
],
|
333 |
+
"source": [
|
334 |
+
"%%capture\n",
|
335 |
+
"!pip install tqdm\n",
|
336 |
+
"\n",
|
337 |
+
"from tqdm import tqdm\n",
|
338 |
+
"import torch\n",
|
339 |
+
"\n",
|
340 |
+
"losses = []\n",
|
341 |
+
"val_losses = []\n",
|
342 |
+
"\n",
|
343 |
+
"epoch_train_losses = []\n",
|
344 |
+
"epoch_test_losses = []\n",
|
345 |
+
"\n",
|
346 |
+
"n_epochs = 10\n",
|
347 |
+
"early_stopping_tolerance = 3\n",
|
348 |
+
"early_stopping_threshold = 0.03\n",
|
349 |
+
"early_stopping_counter = 0 \n",
|
350 |
+
"\n",
|
351 |
+
"best_loss = float(\"inf\") \n",
|
352 |
+
"\n",
|
353 |
+
"for epoch in range(n_epochs):\n",
|
354 |
+
" optimizer.zero_grad()\n",
|
355 |
+
"\n",
|
356 |
+
" epoch_loss = 0\n",
|
357 |
+
" model.train() \n",
|
358 |
+
"\n",
|
359 |
+
" for i, data in tqdm(enumerate(trainloader), total=len(trainloader)):\n",
|
360 |
+
" x_batch, y_batch = data\n",
|
361 |
+
" x_batch = x_batch.to(device)\n",
|
362 |
+
" y_batch = y_batch.unsqueeze(1).float().to(device)\n",
|
363 |
+
"\n",
|
364 |
+
" loss = train_step(x_batch, y_batch)\n",
|
365 |
+
" epoch_loss += loss / len(trainloader)\n",
|
366 |
+
" losses.append(loss)\n",
|
367 |
+
"\n",
|
368 |
+
" epoch_train_losses.append(epoch_loss)\n",
|
369 |
+
" print(f\"\\nEpoch: {epoch+1}, train loss: {epoch_loss:.4f}\")\n",
|
370 |
+
"\n",
|
371 |
+
" model.eval()\n",
|
372 |
+
" with torch.no_grad():\n",
|
373 |
+
" cum_loss = 0\n",
|
374 |
+
" for x_batch, y_batch in testloader:\n",
|
375 |
+
" x_batch = x_batch.to(device)\n",
|
376 |
+
" y_batch = y_batch.unsqueeze(1).float().to(device)\n",
|
377 |
+
"\n",
|
378 |
+
" yhat = model(x_batch)\n",
|
379 |
+
" val_loss = loss_fn(yhat, y_batch)\n",
|
380 |
+
" cum_loss += val_loss.item() / len(testloader)\n",
|
381 |
+
" val_losses.append(val_loss.item())\n",
|
382 |
+
"\n",
|
383 |
+
" epoch_test_losses.append(cum_loss)\n",
|
384 |
+
" print(f\"Epoch: {epoch+1}, val loss: {cum_loss:.4f}\")\n",
|
385 |
+
"\n",
|
386 |
+
" if cum_loss < best_loss:\n",
|
387 |
+
" best_loss = cum_loss\n",
|
388 |
+
" best_model_wts = model.state_dict()\n",
|
389 |
+
" early_stopping_counter = 0\n",
|
390 |
+
" else:\n",
|
391 |
+
" early_stopping_counter += 1\n",
|
392 |
+
"\n",
|
393 |
+
" if early_stopping_counter == early_stopping_tolerance or best_loss <= early_stopping_threshold:\n",
|
394 |
+
" print(\"\\nTerminating: early stopping\")\n",
|
395 |
+
" break\n",
|
396 |
+
"\n",
|
397 |
+
"model.load_state_dict(best_model_wts)\n"
|
398 |
+
]
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"cell_type": "code",
|
402 |
+
"execution_count": null,
|
403 |
+
"metadata": {
|
404 |
+
"trusted": true
|
405 |
+
},
|
406 |
+
"outputs": [],
|
407 |
+
"source": []
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"cell_type": "code",
|
411 |
+
"execution_count": null,
|
412 |
+
"metadata": {
|
413 |
+
"trusted": true
|
414 |
+
},
|
415 |
+
"outputs": [],
|
416 |
+
"source": []
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"cell_type": "code",
|
420 |
+
"execution_count": 13,
|
421 |
+
"metadata": {
|
422 |
+
"execution": {
|
423 |
+
"iopub.execute_input": "2025-04-04T13:00:51.514501Z",
|
424 |
+
"iopub.status.busy": "2025-04-04T13:00:51.514093Z",
|
425 |
+
"iopub.status.idle": "2025-04-04T13:00:51.883630Z",
|
426 |
+
"shell.execute_reply": "2025-04-04T13:00:51.882714Z",
|
427 |
+
"shell.execute_reply.started": "2025-04-04T13:00:51.514470Z"
|
428 |
+
},
|
429 |
+
"trusted": true
|
430 |
+
},
|
431 |
+
"outputs": [
|
432 |
+
{
|
433 |
+
"name": "stdout",
|
434 |
+
"output_type": "stream",
|
435 |
+
"text": [
|
436 |
+
"Fri Apr 4 13:00:51 2025 \n",
|
437 |
+
"+-----------------------------------------------------------------------------------------+\n",
|
438 |
+
"| NVIDIA-SMI 560.35.03 Driver Version: 560.35.03 CUDA Version: 12.6 |\n",
|
439 |
+
"|-----------------------------------------+------------------------+----------------------+\n",
|
440 |
+
"| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
|
441 |
+
"| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n",
|
442 |
+
"| | | MIG M. |\n",
|
443 |
+
"|=========================================+========================+======================|\n",
|
444 |
+
"| 0 Tesla P100-PCIE-16GB Off | 00000000:00:04.0 Off | 0 |\n",
|
445 |
+
"| N/A 36C P0 32W / 250W | 929MiB / 16384MiB | 0% Default |\n",
|
446 |
+
"| | | N/A |\n",
|
447 |
+
"+-----------------------------------------+------------------------+----------------------+\n",
|
448 |
+
" \n",
|
449 |
+
"+-----------------------------------------------------------------------------------------+\n",
|
450 |
+
"| Processes: |\n",
|
451 |
+
"| GPU GI CI PID Type Process name GPU Memory |\n",
|
452 |
+
"| ID ID Usage |\n",
|
453 |
+
"|=========================================================================================|\n",
|
454 |
+
"+-----------------------------------------------------------------------------------------+\n"
|
455 |
+
]
|
456 |
+
}
|
457 |
+
],
|
458 |
+
"source": [
|
459 |
+
"!nvidia-smi"
|
460 |
+
]
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"cell_type": "code",
|
464 |
+
"execution_count": null,
|
465 |
+
"metadata": {
|
466 |
+
"execution": {
|
467 |
+
"iopub.execute_input": "2025-04-04T13:52:03.047692Z",
|
468 |
+
"iopub.status.busy": "2025-04-04T13:52:03.047345Z",
|
469 |
+
"iopub.status.idle": "2025-04-04T14:32:23.869395Z",
|
470 |
+
"shell.execute_reply": "2025-04-04T14:32:23.868306Z",
|
471 |
+
"shell.execute_reply.started": "2025-04-04T13:52:03.047664Z"
|
472 |
+
},
|
473 |
+
"trusted": true
|
474 |
+
},
|
475 |
+
"outputs": [
|
476 |
+
{
|
477 |
+
"name": "stdout",
|
478 |
+
"output_type": "stream",
|
479 |
+
"text": [
|
480 |
+
"Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (4.67.1)\n"
|
481 |
+
]
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"name": "stderr",
|
485 |
+
"output_type": "stream",
|
486 |
+
"text": [
|
487 |
+
"100%|██████████| 6250/6250 [07:21<00:00, 14.15it/s]\n"
|
488 |
+
]
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"name": "stdout",
|
492 |
+
"output_type": "stream",
|
493 |
+
"text": [
|
494 |
+
"\n",
|
495 |
+
"Epoch: 1, train loss: 0.3295\n",
|
496 |
+
"Epoch: 1, val loss: 0.2714\n"
|
497 |
+
]
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"name": "stderr",
|
501 |
+
"output_type": "stream",
|
502 |
+
"text": [
|
503 |
+
"100%|██████████| 6250/6250 [07:49<00:00, 13.32it/s]\n"
|
504 |
+
]
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"name": "stdout",
|
508 |
+
"output_type": "stream",
|
509 |
+
"text": [
|
510 |
+
"\n",
|
511 |
+
"Epoch: 2, train loss: 0.3302\n",
|
512 |
+
"Epoch: 2, val loss: 0.2683\n"
|
513 |
+
]
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"name": "stderr",
|
517 |
+
"output_type": "stream",
|
518 |
+
"text": [
|
519 |
+
"100%|██████████| 6250/6250 [06:44<00:00, 15.47it/s]\n"
|
520 |
+
]
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"name": "stdout",
|
524 |
+
"output_type": "stream",
|
525 |
+
"text": [
|
526 |
+
"\n",
|
527 |
+
"Epoch: 3, train loss: 0.3320\n",
|
528 |
+
"Epoch: 3, val loss: 0.2689\n"
|
529 |
+
]
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"name": "stderr",
|
533 |
+
"output_type": "stream",
|
534 |
+
"text": [
|
535 |
+
"100%|██████████| 6250/6250 [06:30<00:00, 15.99it/s]\n"
|
536 |
+
]
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"name": "stdout",
|
540 |
+
"output_type": "stream",
|
541 |
+
"text": [
|
542 |
+
"\n",
|
543 |
+
"Epoch: 4, train loss: 0.3316\n",
|
544 |
+
"Epoch: 4, val loss: 0.2745\n"
|
545 |
+
]
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"name": "stderr",
|
549 |
+
"output_type": "stream",
|
550 |
+
"text": [
|
551 |
+
"100%|████████���█| 6250/6250 [06:30<00:00, 16.01it/s]\n"
|
552 |
+
]
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"name": "stdout",
|
556 |
+
"output_type": "stream",
|
557 |
+
"text": [
|
558 |
+
"\n",
|
559 |
+
"Epoch: 5, train loss: 0.3331\n",
|
560 |
+
"Epoch: 5, val loss: 0.2716\n",
|
561 |
+
"\n",
|
562 |
+
"Terminating: early stopping\n"
|
563 |
+
]
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"data": {
|
567 |
+
"text/plain": [
|
568 |
+
"<All keys matched successfully>"
|
569 |
+
]
|
570 |
+
},
|
571 |
+
"execution_count": 17,
|
572 |
+
"metadata": {},
|
573 |
+
"output_type": "execute_result"
|
574 |
+
}
|
575 |
+
],
|
576 |
+
"source": [
|
577 |
+
"\n",
|
578 |
+
"!pip install tqdm\n",
|
579 |
+
"\n",
|
580 |
+
"from tqdm import tqdm\n",
|
581 |
+
"import torch\n",
|
582 |
+
"\n",
|
583 |
+
"losses = []\n",
|
584 |
+
"val_losses = []\n",
|
585 |
+
"\n",
|
586 |
+
"epoch_train_losses = []\n",
|
587 |
+
"epoch_test_losses = []\n",
|
588 |
+
"\n",
|
589 |
+
"n_epochs = 10\n",
|
590 |
+
"early_stopping_tolerance = 3\n",
|
591 |
+
"early_stopping_threshold = 0.03\n",
|
592 |
+
"early_stopping_counter = 0\n",
|
593 |
+
"\n",
|
594 |
+
"best_loss = float(\"inf\")\n",
|
595 |
+
"\n",
|
596 |
+
"for epoch in range(n_epochs):\n",
|
597 |
+
" optimizer.zero_grad() \n",
|
598 |
+
"\n",
|
599 |
+
" epoch_loss = 0\n",
|
600 |
+
" model.train()\n",
|
601 |
+
"\n",
|
602 |
+
" for i, data in tqdm(enumerate(trainloader), total=len(trainloader)):\n",
|
603 |
+
" x_batch, y_batch = data\n",
|
604 |
+
" x_batch = x_batch.to(device)\n",
|
605 |
+
" y_batch = y_batch.unsqueeze(1).float().to(device)\n",
|
606 |
+
"\n",
|
607 |
+
" loss = train_step(x_batch, y_batch) \n",
|
608 |
+
" loss_value = loss.item() \n",
|
609 |
+
"\n",
|
610 |
+
" epoch_loss += loss_value / len(trainloader)\n",
|
611 |
+
" losses.append(loss_value) \n",
|
612 |
+
" epoch_train_losses.append(epoch_loss)\n",
|
613 |
+
" print(f\"\\nEpoch: {epoch+1}, train loss: {epoch_loss:.4f}\")\n",
|
614 |
+
"\n",
|
615 |
+
" model.eval()\n",
|
616 |
+
" with torch.no_grad():\n",
|
617 |
+
" cum_loss = 0\n",
|
618 |
+
" for x_batch, y_batch in testloader:\n",
|
619 |
+
" x_batch = x_batch.to(device)\n",
|
620 |
+
" y_batch = y_batch.unsqueeze(1).float().to(device)\n",
|
621 |
+
"\n",
|
622 |
+
" yhat = model(x_batch)\n",
|
623 |
+
" val_loss = loss_fn(yhat, y_batch)\n",
|
624 |
+
" val_loss_value = val_loss.item() \n",
|
625 |
+
" cum_loss += val_loss_value / len(testloader)\n",
|
626 |
+
" val_losses.append(val_loss_value) \n",
|
627 |
+
"\n",
|
628 |
+
" epoch_test_losses.append(cum_loss)\n",
|
629 |
+
" print(f\"Epoch: {epoch+1}, val loss: {cum_loss:.4f}\")\n",
|
630 |
+
"\n",
|
631 |
+
" if cum_loss < best_loss:\n",
|
632 |
+
" best_loss = cum_loss\n",
|
633 |
+
" best_model_wts = model.state_dict()\n",
|
634 |
+
" early_stopping_counter = 0\n",
|
635 |
+
" else:\n",
|
636 |
+
" early_stopping_counter += 1\n",
|
637 |
+
"\n",
|
638 |
+
" if early_stopping_counter == early_stopping_tolerance or best_loss <= early_stopping_threshold:\n",
|
639 |
+
" print(\"\\nTerminating: early stopping\")\n",
|
640 |
+
" break\n",
|
641 |
+
"\n",
|
642 |
+
"model.load_state_dict(best_model_wts)\n"
|
643 |
+
]
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"cell_type": "code",
|
647 |
+
"execution_count": 19,
|
648 |
+
"metadata": {
|
649 |
+
"execution": {
|
650 |
+
"iopub.execute_input": "2025-04-04T14:34:04.284009Z",
|
651 |
+
"iopub.status.busy": "2025-04-04T14:34:04.283650Z",
|
652 |
+
"iopub.status.idle": "2025-04-04T14:34:04.364630Z",
|
653 |
+
"shell.execute_reply": "2025-04-04T14:34:04.363652Z",
|
654 |
+
"shell.execute_reply.started": "2025-04-04T14:34:04.283981Z"
|
655 |
+
},
|
656 |
+
"trusted": true
|
657 |
+
},
|
658 |
+
"outputs": [],
|
659 |
+
"source": [
|
660 |
+
"\n",
|
661 |
+
"torch.save(model.state_dict(), \"my_model.pth\")\n"
|
662 |
+
]
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"cell_type": "code",
|
666 |
+
"execution_count": null,
|
667 |
+
"metadata": {
|
668 |
+
"execution": {
|
669 |
+
"iopub.execute_input": "2025-04-04T14:34:16.117938Z",
|
670 |
+
"iopub.status.busy": "2025-04-04T14:34:16.117620Z",
|
671 |
+
"iopub.status.idle": "2025-04-04T14:34:16.821580Z",
|
672 |
+
"shell.execute_reply": "2025-04-04T14:34:16.820869Z",
|
673 |
+
"shell.execute_reply.started": "2025-04-04T14:34:16.117913Z"
|
674 |
+
},
|
675 |
+
"trusted": true
|
676 |
+
},
|
677 |
+
"outputs": [],
|
678 |
+
"source": [
|
679 |
+
"from safetensors.torch import save_file\n",
|
680 |
+
"\n",
|
681 |
+
"save_file(model.state_dict(), \"my_model.safetensors\")\n",
|
682 |
+
"\n",
|
683 |
+
"import h5py\n",
|
684 |
+
"\n",
|
685 |
+
"state_dict = model.state_dict()\n",
|
686 |
+
"\n",
|
687 |
+
"with h5py.File(\"my_model.h5\", \"w\") as f:\n",
|
688 |
+
" for key, tensor in state_dict.items():\n",
|
689 |
+
" f.create_dataset(key, data=tensor.cpu().numpy())\n"
|
690 |
+
]
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"cell_type": "code",
|
694 |
+
"execution_count": 23,
|
695 |
+
"metadata": {
|
696 |
+
"execution": {
|
697 |
+
"iopub.execute_input": "2025-04-04T14:40:54.022447Z",
|
698 |
+
"iopub.status.busy": "2025-04-04T14:40:54.021956Z",
|
699 |
+
"iopub.status.idle": "2025-04-04T14:40:54.031801Z",
|
700 |
+
"shell.execute_reply": "2025-04-04T14:40:54.030996Z",
|
701 |
+
"shell.execute_reply.started": "2025-04-04T14:40:54.022406Z"
|
702 |
+
},
|
703 |
+
"trusted": true
|
704 |
+
},
|
705 |
+
"outputs": [],
|
706 |
+
"source": [
|
707 |
+
"#inference\n",
|
708 |
+
"import os\n",
|
709 |
+
"import torch\n",
|
710 |
+
"from torchvision import models, transforms\n",
|
711 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
712 |
+
"from PIL import Image\n",
|
713 |
+
"import pandas as pd\n",
|
714 |
+
"\n",
|
715 |
+
"class InferenceDataset(Dataset):\n",
|
716 |
+
" def __init__(self, folder, transform):\n",
|
717 |
+
" self.paths = [os.path.join(folder, f) for f in os.listdir(folder)\n",
|
718 |
+
" if f.lower().endswith((\"png\", \"jpg\", \"jpeg\"))]\n",
|
719 |
+
" self.transform = transform\n",
|
720 |
+
"\n",
|
721 |
+
" def __len__(self):\n",
|
722 |
+
" return len(self.paths)\n",
|
723 |
+
"\n",
|
724 |
+
" def __getitem__(self, idx):\n",
|
725 |
+
" img = Image.open(self.paths[idx]).convert(\"RGB\")\n",
|
726 |
+
" return self.transform(img), self.paths[idx]\n",
|
727 |
+
"\n",
|
728 |
+
"def run_inference(image_folder, output_csv=\"predictions.csv\"):\n",
|
729 |
+
" device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
730 |
+
"\n",
|
731 |
+
" model = models.resnet18(pretrained=True)\n",
|
732 |
+
" for p in model.parameters():\n",
|
733 |
+
" p.requires_grad = False\n",
|
734 |
+
" model.fc = torch.nn.Linear(model.fc.in_features, 1)\n",
|
735 |
+
" model = model.to(device)\n",
|
736 |
+
" model.eval()\n",
|
737 |
+
"\n",
|
738 |
+
" transform = transforms.Compose([\n",
|
739 |
+
" transforms.Resize((224, 224)),\n",
|
740 |
+
" transforms.ToTensor(),\n",
|
741 |
+
" transforms.Normalize([0.485, 0.456, 0.406],\n",
|
742 |
+
" [0.229, 0.224, 0.225])\n",
|
743 |
+
" ])\n",
|
744 |
+
"\n",
|
745 |
+
" dataset = InferenceDataset(image_folder, transform)\n",
|
746 |
+
" loader = DataLoader(dataset, batch_size=1, shuffle=False)\n",
|
747 |
+
"\n",
|
748 |
+
" results = []\n",
|
749 |
+
" with torch.no_grad():\n",
|
750 |
+
" for img, path in loader:\n",
|
751 |
+
" img = img.to(device)\n",
|
752 |
+
" pred = torch.sigmoid(model(img)).item()\n",
|
753 |
+
" label = \"REAL\" if pred >= 0.5 else \"FAKE\"\n",
|
754 |
+
" results.append({\"image_path\": path[0], \"prediction\": label, \"score\": pred})\n",
|
755 |
+
"\n",
|
756 |
+
" pd.DataFrame(results).to_csv(output_csv, index=False)\n"
|
757 |
+
]
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"cell_type": "code",
|
761 |
+
"execution_count": 24,
|
762 |
+
"metadata": {
|
763 |
+
"execution": {
|
764 |
+
"iopub.execute_input": "2025-04-04T14:41:16.510441Z",
|
765 |
+
"iopub.status.busy": "2025-04-04T14:41:16.510058Z",
|
766 |
+
"iopub.status.idle": "2025-04-04T14:41:17.143128Z",
|
767 |
+
"shell.execute_reply": "2025-04-04T14:41:17.142398Z",
|
768 |
+
"shell.execute_reply.started": "2025-04-04T14:41:16.510411Z"
|
769 |
+
},
|
770 |
+
"trusted": true
|
771 |
+
},
|
772 |
+
"outputs": [],
|
773 |
+
"source": [
|
774 |
+
"final_path = \"/kaggle/input/finald/Test datasets/Test_dataset_2\"\n",
|
775 |
+
"run_inference(final_path, \"outputdata1.csv\")\n",
|
776 |
+
"run_inference(final_path, \"outputdata2.csv\")"
|
777 |
+
]
|
778 |
+
}
|
779 |
+
],
|
780 |
+
"metadata": {
|
781 |
+
"kaggle": {
|
782 |
+
"accelerator": "gpu",
|
783 |
+
"dataSources": [
|
784 |
+
{
|
785 |
+
"datasetId": 3041726,
|
786 |
+
"sourceId": 5256696,
|
787 |
+
"sourceType": "datasetVersion"
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"datasetId": 7049439,
|
791 |
+
"sourceId": 11276085,
|
792 |
+
"sourceType": "datasetVersion"
|
793 |
+
}
|
794 |
+
],
|
795 |
+
"dockerImageVersionId": 30919,
|
796 |
+
"isGpuEnabled": true,
|
797 |
+
"isInternetEnabled": true,
|
798 |
+
"language": "python",
|
799 |
+
"sourceType": "notebook"
|
800 |
+
},
|
801 |
+
"kernelspec": {
|
802 |
+
"display_name": "Python 3",
|
803 |
+
"language": "python",
|
804 |
+
"name": "python3"
|
805 |
+
},
|
806 |
+
"language_info": {
|
807 |
+
"codemirror_mode": {
|
808 |
+
"name": "ipython",
|
809 |
+
"version": 3
|
810 |
+
},
|
811 |
+
"file_extension": ".py",
|
812 |
+
"mimetype": "text/x-python",
|
813 |
+
"name": "python",
|
814 |
+
"nbconvert_exporter": "python",
|
815 |
+
"pygments_lexer": "ipython3",
|
816 |
+
"version": "3.10.12"
|
817 |
+
}
|
818 |
+
},
|
819 |
+
"nbformat": 4,
|
820 |
+
"nbformat_minor": 4
|
821 |
+
}
|
Kaggle Output Data 2.csv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
image_path,prediction,score
|
2 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/11.png,REAL,0.5577288866043091
|
3 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/4.png,FAKE,0.3429737687110901
|
4 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/9.png,FAKE,0.4281144440174103
|
5 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/14.png,FAKE,0.42051035165786743
|
6 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/1.png,FAKE,0.4234199821949005
|
7 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/20.png,FAKE,0.4581557512283325
|
8 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/2.png,REAL,0.674893319606781
|
9 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/10.png,FAKE,0.31975361704826355
|
10 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/18.png,FAKE,0.38838866353034973
|
11 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/12.png,REAL,0.5615072846412659
|
12 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/7.png,FAKE,0.48348483443260193
|
13 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/17.png,FAKE,0.46091413497924805
|
14 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/5.png,REAL,0.5818506479263306
|
15 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/3.png,REAL,0.5805583000183105
|
16 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/16.png,FAKE,0.4133031666278839
|
17 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/8.png,REAL,0.5182304978370667
|
18 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/6.png,FAKE,0.44089677929878235
|
19 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/15.png,REAL,0.5523123741149902
|
20 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/13.png,FAKE,0.4346674084663391
|
21 |
+
/kaggle/input/finald/Test datasets/Test_dataset_2/19.png,FAKE,0.450478732585907
|
My Model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efe70c5a580d3ef3438c5038bde8374276500f45a73b8e60888bc289ecf55fff
|
3 |
+
size 44787068
|
My Model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:991fc24e8abd20955af8cfc521a6d05bf84dfd57be3ca1024a092df70e10d35f
|
3 |
+
size 44757412
|
Readme.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ImageDetectionModel : A Ai Image detection model to find if a image is orginal or Ai generated
|
2 |
+
------------->Models are in the folder
|
3 |
+
-> H5
|
4 |
+
->safetensor
|
5 |
+
->pth
|
6 |
+
==============================
|
7 |
+
|
8 |
+
For inference , run through the
|
9 |
+
inference.py file
|