Rename tg.py to tg.ggml
Browse files
tg.ggml
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Model definition
|
2 |
+
model MyModel {
|
3 |
+
// Input features
|
4 |
+
input text: string;
|
5 |
+
|
6 |
+
// Tokenization layer
|
7 |
+
tokenizer {
|
8 |
+
type: SentencePiece;
|
9 |
+
vocab_size: 256; // Adjust based on dataset
|
10 |
+
}
|
11 |
+
|
12 |
+
// Embedding layer
|
13 |
+
embeddings {
|
14 |
+
dim: 64;
|
15 |
+
}
|
16 |
+
|
17 |
+
// Encoder layers
|
18 |
+
encoder {
|
19 |
+
type: lstm;
|
20 |
+
units: 128;
|
21 |
+
num_layers: 2;
|
22 |
+
}
|
23 |
+
|
24 |
+
// Decoder layers
|
25 |
+
decoder {
|
26 |
+
type: gru;
|
27 |
+
units: 64;
|
28 |
+
num_layers: 1;
|
29 |
+
}
|
30 |
+
|
31 |
+
// Output layer
|
32 |
+
output {
|
33 |
+
type: dense;
|
34 |
+
units: vocab_size;
|
35 |
+
}
|
36 |
+
|
37 |
+
// Loss function
|
38 |
+
loss {
|
39 |
+
type: softmax_cross_entropy;
|
40 |
+
}
|
41 |
+
|
42 |
+
// Optimizer
|
43 |
+
optimizer {
|
44 |
+
type: adam;
|
45 |
+
learning_rate: 0.001;
|
46 |
+
}
|
47 |
+
}
|
48 |
+
|
49 |
+
// Training parameters
|
50 |
+
train {
|
51 |
+
// ... (Define training data and hyperparameters)
|
52 |
+
}
|
53 |
+
|
54 |
+
// Inference parameters
|
55 |
+
inference {
|
56 |
+
// ... (Define input and output behavior)
|
57 |
+
}
|
tg.py
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
def generate_text(seed_word, max_length=100):
|
2 |
-
"""
|
3 |
-
Generates text using a simple rule-based system.
|
4 |
-
|
5 |
-
Args:
|
6 |
-
seed_word: The word to start the generation.
|
7 |
-
max_length: The maximum length of the generated text.
|
8 |
-
|
9 |
-
Returns:
|
10 |
-
A string of generated text.
|
11 |
-
"""
|
12 |
-
|
13 |
-
# Define a dictionary of word pairs (key, value) where the key is a word and the value is a list of possible next words
|
14 |
-
word_pairs = {
|
15 |
-
"hello": ["world", "there"],
|
16 |
-
"world": ["is", "beautiful"],
|
17 |
-
"beautiful": ["day", "morning"],
|
18 |
-
"day": ["the", "end"],
|
19 |
-
"the": ["quick", "brown"],
|
20 |
-
"brown": ["fox", "jumps"],
|
21 |
-
"fox": ["over", "the"],
|
22 |
-
"jumps": ["lazy", "dog"],
|
23 |
-
"lazy": ["dog", "sleeps"],
|
24 |
-
"dog": ["all", "day"],
|
25 |
-
"sleeps": ["all", "night"],
|
26 |
-
"night": ["and", "dreams"],
|
27 |
-
"dreams": ["of", "chasing"],
|
28 |
-
"chasing": ["mice", "again"],
|
29 |
-
"again": ["the", "end"]
|
30 |
-
}
|
31 |
-
|
32 |
-
text = seed_word
|
33 |
-
while len(text.split()) < max_length and text[-1] in word_pairs:
|
34 |
-
next_words = word_pairs[text[-1]]
|
35 |
-
text += " " + random.choice(next_words)
|
36 |
-
return text
|
37 |
-
|
38 |
-
# Example usage
|
39 |
-
seed_word = "hello"
|
40 |
-
generated_text = generate_text(seed_word)
|
41 |
-
print(generated_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|