Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- PygmalionAI/Eleusis-12B
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
---
|
9 |
+
|
10 |
+
This is an ONNX optimized version of [Eleusis-12B](https://huggingface.co/PygmalionAI/Eleusis-12B).
|
11 |
+
For a more comprehensive info about the model's capabilities, please visit the original model's repo.
|
12 |
+
|
13 |
+
## Inference
|
14 |
+
### Requirements
|
15 |
+
If you're on a CPU-only machine:
|
16 |
+
|
17 |
+
```sh
|
18 |
+
pip install onnxruntime
|
19 |
+
```
|
20 |
+
|
21 |
+
If you have an NVIDIA GPU available:
|
22 |
+
```sh
|
23 |
+
pip uninstall onnxruntime -y
|
24 |
+
pip install onnxruntime-gpu
|
25 |
+
```
|
26 |
+
|
27 |
+
Make sure you have installed [CUDA Toolkit](https://developer.nvidia.com/cuda-12-4-0-download-archive) and [cuDNN](https://developer.nvidia.com/cudnn)
|
28 |
+
|
29 |
+
```sh
|
30 |
+
import onnxruntime as ort
|
31 |
+
from transformers import AutoTokenizer
|
32 |
+
import numpy as np
|
33 |
+
import argparse
|
34 |
+
|
35 |
+
def generate_text(prompt, num_tokens, model_path, tokenizer_path):
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
|
37 |
+
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
38 |
+
session = ort.InferenceSession(model_path, providers=providers)
|
39 |
+
|
40 |
+
input_ids = tokenizer(prompt, return_tensors="np").input_ids
|
41 |
+
|
42 |
+
for _ in range(num_tokens):
|
43 |
+
# Create attention mask and position ids
|
44 |
+
attention_mask = np.ones_like(input_ids)
|
45 |
+
position_ids = np.arange(input_ids.shape[1])[None, :]
|
46 |
+
|
47 |
+
outputs = session.run(
|
48 |
+
output_names=['logits'],
|
49 |
+
input_feed={
|
50 |
+
'input_ids': input_ids,
|
51 |
+
'attention_mask': attention_mask,
|
52 |
+
'position_ids': position_ids
|
53 |
+
}
|
54 |
+
)
|
55 |
+
|
56 |
+
next_token = np.argmax(outputs[0][0, -1, :])
|
57 |
+
|
58 |
+
input_ids = np.concatenate([input_ids, [[next_token]]], axis=1)
|
59 |
+
|
60 |
+
return tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
parser = argparse.ArgumentParser(description='Generate text using ONNX model')
|
64 |
+
parser.add_argument('prompt', type=str, help='Input prompt for generation')
|
65 |
+
parser.add_argument('num_tokens', type=int, help='Number of tokens to generate')
|
66 |
+
parser.add_argument('--model_path', type=str, default='model.onnx',
|
67 |
+
help='Path to ONNX model file')
|
68 |
+
parser.add_argument('--tokenizer_path', type=str, default='tokenizer',
|
69 |
+
help='Path to tokenizer directory')
|
70 |
+
|
71 |
+
args = parser.parse_args()
|
72 |
+
|
73 |
+
result = generate_text(args.prompt, args.num_tokens, args.model_path, args.tokenizer_path)
|
74 |
+
print(result)
|
75 |
+
```
|
76 |
+
|
77 |
+
```sh
|
78 |
+
python onnx_inference.py "Once upon a time" 512 --model_path /path/to/model.onnx --tokenizer_path /path/to/model/dir
|
79 |
+
```
|
80 |
+
|
81 |
+
This is an example script, and not properly optimized.
|