File size: 33,734 Bytes
4728b48
 
 
 
 
 
 
 
 
5e19b3e
4728b48
 
 
dc4921a
4728b48
 
 
 
dc4921a
4728b48
 
 
 
 
 
 
 
 
c1169d7
4728b48
c1169d7
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeb40e
 
 
c1169d7
fbeb40e
 
4728b48
6bd5dde
4728b48
fbeb40e
6bd5dde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeb40e
6bd5dde
 
 
 
 
 
 
 
 
 
fbeb40e
6bd5dde
 
 
fbeb40e
6bd5dde
 
 
 
fbeb40e
6bd5dde
 
4728b48
 
6bd5dde
4728b48
 
 
fbeb40e
 
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
 
 
 
 
fbeb40e
4728b48
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
 
fbeb40e
4728b48
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
fbeb40e
4728b48
 
 
 
 
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeb40e
 
 
 
4728b48
fbeb40e
 
 
4728b48
fbeb40e
4728b48
 
 
 
 
 
 
 
fbeb40e
 
 
 
4728b48
 
 
 
 
fbeb40e
 
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeb40e
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bd5dde
 
 
 
 
 
 
 
 
 
 
fbeb40e
 
 
 
6bd5dde
 
4728b48
 
08f233e
4728b48
 
08f233e
4728b48
 
 
 
 
 
 
 
 
 
 
 
dc4921a
4728b48
 
dc4921a
4728b48
 
 
 
 
 
 
 
dc4921a
4728b48
 
 
dc4921a
4728b48
 
dc4921a
4728b48
 
 
 
 
 
 
 
 
 
 
08f233e
 
 
4728b48
 
 
 
 
 
 
 
 
c1169d7
 
 
4728b48
 
c1169d7
dc4921a
4728b48
 
 
c1169d7
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc4921a
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08f233e
 
 
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
08f233e
 
 
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
08f233e
 
 
4728b48
 
 
 
 
 
 
 
 
 
 
 
08f233e
 
 
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1169d7
 
 
4728b48
 
c1169d7
4728b48
dc4921a
4728b48
 
 
c1169d7
4728b48
 
 
 
 
 
 
 
 
 
 
 
08f233e
 
 
4728b48
 
 
 
 
 
 
 
 
c1169d7
dc4921a
c1169d7
 
 
 
4728b48
 
c1169d7
4728b48
 
 
dc4921a
4728b48
dc4921a
4728b48
 
dc4921a
4728b48
dc4921a
4728b48
 
dc4921a
4728b48
 
dc4921a
4728b48
 
dc4921a
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
dc4921a
4728b48
 
dc4921a
4728b48
 
 
dc4921a
4728b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc4921a
4728b48
dc4921a
4728b48
 
 
 
 
 
 
6bd5dde
c1169d7
6bd5dde
 
 
 
 
 
 
 
 
c1169d7
 
6bd5dde
 
c1169d7
6bd5dde
c1169d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
---
license: other
license_name: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-Omni-7B/blob/main/LICENSE
language:
- en
tags:
- multimodal
library_name: transformers
pipeline_tag: any-to-any
---

# Qwen2.5-Omni
<a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
    <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
</a>


## Overview 
### Introduction
Qwen2.5-Omni is an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. 

<p align="center">
    <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/qwen_omni.png" width="80%"/>
<p>

### Key Features

* **Omni and Novel Architecture**: We propose Thinker-Talker architecture, an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. We propose a novel position embedding, named TMRoPE (Time-aligned Multimodal RoPE), to synchronize the timestamps of video inputs with audio.

* **Real-Time Voice and Video Chat**: Architecture designed for fully real-time interactions, supporting chunked input and immediate output.

* **Natural and Robust Speech Generation**: Surpassing many existing streaming and non-streaming alternatives, demonstrating superior robustness and naturalness in speech generation.

* **Strong Performance Across Modalities**: Exhibiting exceptional performance across all modalities when benchmarked against similarly sized single-modality models. Qwen2.5-Omni outperforms the similarly sized Qwen2-Audio in audio capabilities and achieves comparable performance to Qwen2.5-VL-7B.

* **Excellent End-to-End Speech Instruction Following**: Qwen2.5-Omni shows performance in end-to-end speech instruction following that rivals its effectiveness with text inputs, evidenced by benchmarks such as MMLU and GSM8K.

### Model Architecture

<p align="center">
    <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/overview.png" width="80%"/>
<p>

### Performance

We conducted a comprehensive evaluation of Qwen2.5-Omni, which demonstrates strong performance across all modalities when compared to similarly sized single-modality models and closed-source models like Qwen2.5-VL-7B, Qwen2-Audio, and Gemini-1.5-pro. In tasks requiring the integration of multiple modalities, such as OmniBench, Qwen2.5-Omni achieves state-of-the-art performance. Furthermore, in single-modality tasks, it excels in areas including speech recognition (Common Voice), translation (CoVoST2), audio understanding (MMAU), image reasoning (MMMU, MMStar), video understanding (MVBench), and speech generation (Seed-tts-eval and subjective naturalness).

<p align="center">
    <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/bar.png" width="80%"/>
<p>

<details>
<summary>Multimodality  -> Text</summary>

<table class="tg"><thead>
  <tr>
    <th class="tg-0lax">Datasets</th>
    <th class="tg-0lax">Model</th>
    <th class="tg-0lax">Performance</th>
  </tr></thead>
<tbody>
  <tr>
    <td class="tg-0lax" rowspan="10">OmniBench<br>Speech | Sound Event | Music | Avg</td>
    <td class="tg-0lax">Gemini-1.5-Pro</td>
    <td class="tg-0lax">42.67%|42.26%|46.23%|42.91%</td>
  </tr>
  <tr>
    <td class="tg-0lax">MIO-Instruct</td>
    <td class="tg-0lax">36.96%|33.58%|11.32%|33.80%</td>
  </tr>
  <tr>
    <td class="tg-0lax">AnyGPT (7B)</td>
    <td class="tg-0lax">17.77%|20.75%|13.21%|18.04%</td>
  </tr>
  <tr>
    <td class="tg-0lax">video-SALMONN</td>
    <td class="tg-0lax">34.11%|31.70%|<strong>56.60%</strong>|35.64%</td>
  </tr>
  <tr>
    <td class="tg-0lax">UnifiedIO2-xlarge</td>
    <td class="tg-0lax">39.56%|36.98%|29.25%|38.00%</td>
  </tr>
  <tr>
    <td class="tg-0lax">UnifiedIO2-xxlarge</td>
    <td class="tg-0lax">34.24%|36.98%|24.53%|33.98%</td>
  </tr>
  <tr>
    <td class="tg-0lax">MiniCPM-o</td>
    <td class="tg-0lax">-|-|-|40.50%</td>
  </tr>
  <tr>
    <td class="tg-0lax">Baichuan-Omni-1.5</td>
    <td class="tg-0lax">-|-|-|42.90%</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B</td>
    <td class="tg-0lax"><strong>55.25%</strong>|<strong>60.00%</strong>|52.83%|<strong>56.13%</strong></td>
  </tr>
</tbody></table>
</details>


<details>
<summary>Audio -> Text</summary>


<table class="tg"><thead>
  <tr>
    <th class="tg-0lax">Datasets</th>
    <th class="tg-0lax">Model</th>
    <th class="tg-0lax">Performance</th>
  </tr></thead>
<tbody>
  <tr>
    <td class="tg-9j4x" colspan="3">ASR</td>
  </tr>
  <tr>
    <td class="tg-0lax" rowspan="11">Librispeech<br>dev-clean | dev other | test-clean | test-other</td>
    <td class="tg-0lax">SALMONN</td>
    <td class="tg-0lax">-|-|2.1|4.9</td>
  </tr>
  <tr>
    <td class="tg-0lax">SpeechVerse</td>
    <td class="tg-0lax">-|-|2.1|4.4</td>
  </tr>
  <tr>
    <td class="tg-0lax">Whisper-large-v3</td>
    <td class="tg-0lax">-|-|1.8|3.6</td>
  </tr>
  <tr>
    <td class="tg-0lax">Llama-3-8B</td>
    <td class="tg-0lax">-|-|-|3.4</td>
  </tr>
  <tr>
    <td class="tg-0lax">Llama-3-70B</td>
    <td class="tg-0lax">-|-|-|3.1</td>
  </tr>
  <tr>
    <td class="tg-0lax">Seed-ASR-Multilingual</td>
    <td class="tg-0lax">-|-|<strong>1.6</strong>|<strong>2.8</strong></td>
  </tr>
  <tr>
    <td class="tg-0lax">MiniCPM-o</td>
    <td class="tg-0lax">-|-|1.7|-</td>
  </tr>
  <tr>
    <td class="tg-0lax">MinMo</td>
    <td class="tg-0lax">-|-|1.7|3.9</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen-Audio</td>
    <td class="tg-0lax">1.8|4.0|2.0|4.2</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2-Audio</td>
    <td class="tg-0lax"><strong>1.3</strong>|<strong>3.4</strong>|<strong>1.6</strong>|3.6</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B</td>
    <td class="tg-0lax">1.6|3.5|1.8|3.4</td>
  </tr>
  <tr>
    <td class="tg-0lax" rowspan="4">Common Voice 15<br>en | zh | yue | fr</td>
    <td class="tg-0lax">Whisper-large-v3</td>
    <td class="tg-0lax">9.3|12.8|10.9|10.8</td>
  </tr>
  <tr>
    <td class="tg-0lax">MinMo</td>
    <td class="tg-0lax">7.9|6.3|6.4|8.5</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2-Audio</td>
    <td class="tg-0lax">8.6|6.9|<strong>5.9</strong>|9.6</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B</td>
    <td class="tg-0lax"><strong>7.6</strong>|<strong>5.2</strong>|7.3|<strong>7.5</strong></td>
  </tr>
  <tr>
    <td class="tg-0lax" rowspan="7">Fleurs<br>zh | en</td>
    <td class="tg-0lax">Whisper-large-v3</td>
    <td class="tg-0lax">7.7|4.1</td>
  </tr>
  <tr>
    <td class="tg-0lax">Seed-ASR-Multilingual</td>
    <td class="tg-0lax">-|<strong>3.4</strong></td>
  </tr>
  <tr>
    <td class="tg-0lax">Megrez-3B-Omni</td>
    <td class="tg-0lax">10.8|-</td>
  </tr>
  <tr>
    <td class="tg-0lax">MiniCPM-o</td>
    <td class="tg-0lax">4.4|-</td>
  </tr>
  <tr>
    <td class="tg-0lax">MinMo</td>
    <td class="tg-0lax">3.0|3.8</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2-Audio</td>
    <td class="tg-0lax">7.5|-</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B</td>
    <td class="tg-0lax"><strong>3.0</strong>|4.1</td>
  </tr>
  <tr>
    <td class="tg-0lax" rowspan="5">Wenetspeech<br>test-net | test-meeting</td>
    <td class="tg-0lax">Seed-ASR-Chinese</td>
    <td class="tg-0lax"><strong>4.7|5.7</strong></td>
  </tr>
  <tr>
    <td class="tg-0lax">Megrez-3B-Omni</td>
    <td class="tg-0lax">-|16.4</td>
  </tr>
  <tr>
    <td class="tg-0lax">MiniCPM-o</td>
    <td class="tg-0lax">6.9|-</td>
  </tr>
  <tr>
    <td class="tg-0lax">MinMo</td>
    <td class="tg-0lax">6.8|7.4</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B</td>
    <td class="tg-0lax">5.9|7.7</td>
  </tr>
  <tr>
    <td class="tg-0lax" rowspan="3">Voxpopuli-V1.0-en</td>
    <td class="tg-0lax">Llama-3-8B</td>
    <td class="tg-0lax">6.2</td>
  </tr>
  <tr>
    <td class="tg-0lax">Llama-3-70B</td>
    <td class="tg-0lax"><strong>5.7</strong></td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B</td>
    <td class="tg-0lax">5.8</td>
  </tr>
  <tr>
    <td class="tg-9j4x" colspan="3">S2TT</td>
  </tr>
  <tr>
    <td class="tg-0lax" rowspan="8">CoVoST2<br>en-de | de-en | en-zh | zh-en</td>
    <td class="tg-0lax">SALMONN</td>
    <td class="tg-0lax">18.6|-|33.1|-</td>
  </tr>
  <tr>
    <td class="tg-0lax">SpeechLLaMA</td>
    <td class="tg-0lax">-|27.1|-|12.3</td>
  </tr>
  <tr>
    <td class="tg-0lax">BLSP</td>
    <td class="tg-0lax">14.1|-|-|-</td>
  </tr>
  <tr>
    <td class="tg-0lax">MiniCPM-o</td>
    <td class="tg-0lax">-|-|<strong>48.2</strong>|27.2</td>
  </tr>
  <tr>
    <td class="tg-0lax">MinMo</td>
    <td class="tg-0lax">-|<strong>39.9</strong>|46.7|26.0</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen-Audio</td>
    <td class="tg-0lax">25.1|33.9|41.5|15.7</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2-Audio</td>
    <td class="tg-0lax">29.9|35.2|45.2|24.4</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B</td>
    <td class="tg-0lax"><strong>30.2</strong>|37.7|41.4|<strong>29.4</strong></td>
  </tr>
  <tr>
    <td class="tg-9j4x" colspan="3">SER</td>
  </tr>
  <tr>
    <td class="tg-0lax" rowspan="5">Meld</td>
    <td class="tg-0lax">WavLM-large</td>
    <td class="tg-0lax">0.542</td>
  </tr>
  <tr>
    <td class="tg-0lax">MiniCPM-o</td>
    <td class="tg-0lax">0.524</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen-Audio</td>
    <td class="tg-0lax">0.557</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2-Audio</td>
    <td class="tg-0lax">0.553</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B</td>
    <td class="tg-0lax"><strong>0.570</strong></td>
  </tr>
  <tr>
    <td class="tg-9j4x" colspan="3">VSC</td>
  </tr>
  <tr>
    <td class="tg-0lax" rowspan="5">VocalSound</td>
    <td class="tg-0lax">CLAP</td>
    <td class="tg-0lax">0.495</td>
  </tr>
  <tr>
    <td class="tg-0lax">Pengi</td>
    <td class="tg-0lax">0.604</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen-Audio</td>
    <td class="tg-0lax">0.929</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2-Audio</td>
    <td class="tg-0lax"><strong>0.939</strong></td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B</td>
    <td class="tg-0lax"><strong>0.939</strong></td>
  </tr>
  <tr>
    <td class="tg-9j4x" colspan="3">Music</td>
  </tr>
  <tr>
    <td class="tg-0lax" rowspan="2">GiantSteps Tempo</td>
    <td class="tg-0lax">Llark-7B</td>
    <td class="tg-0lax">0.86</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B</td>
    <td class="tg-0lax"><strong>0.88</strong></td>
  </tr>
  <tr>
    <td class="tg-0lax" rowspan="2">MusicCaps</td>
    <td class="tg-0lax">LP-MusicCaps</td>
    <td class="tg-0lax">0.291|0.149|0.089|<strong>0.061</strong>|<strong>0.129</strong>|0.130</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B</td>
    <td class="tg-0lax"><strong>0.328</strong>|<strong>0.162</strong>|<strong>0.090</strong>|0.055|0.127|<strong>0.225</strong></td>
  </tr>
  <tr>
    <td class="tg-9j4x" colspan="3">Audio Reasoning</td>
  </tr>
  <tr>
    <td class="tg-0lax" rowspan="3">MMAU<br>Sound | Music | Speech | Avg</td>
    <td class="tg-0lax">Gemini-Pro-V1.5</td>
    <td class="tg-0lax">56.75|49.40|58.55|54.90</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2-Audio</td>
    <td class="tg-0lax">54.95|50.98|42.04|49.20</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B</td>
    <td class="tg-0lax"><strong>67.87|69.16|59.76|65.60</strong></td>
  </tr>
  <tr>
    <td class="tg-9j4x" colspan="3">Voice Chatting</td>
  </tr>
  <tr>
    <td class="tg-0lax" rowspan="8">VoiceBench<br>AlpacaEval | CommonEval | SD-QA | MMSU</td>
    <td class="tg-0lax">Ultravox-v0.4.1-LLaMA-3.1-8B</td>
    <td class="tg-0lax"><strong>4.55</strong>|3.90|53.35|47.17</td>
  </tr>
  <tr>
    <td class="tg-0lax">MERaLiON</td>
    <td class="tg-0lax">4.50|3.77|55.06|34.95</td>
  </tr>
  <tr>
    <td class="tg-0lax">Megrez-3B-Omni</td>
    <td class="tg-0lax">3.50|2.95|25.95|27.03</td>
  </tr>
  <tr>
    <td class="tg-0lax">Lyra-Base</td>
    <td class="tg-0lax">3.85|3.50|38.25|49.74</td>
  </tr>
  <tr>
    <td class="tg-0lax">MiniCPM-o</td>
    <td class="tg-0lax">4.42|<strong>4.15</strong>|50.72|54.78</td>
  </tr>
  <tr>
    <td class="tg-0lax">Baichuan-Omni-1.5</td>
    <td class="tg-0lax">4.50|4.05|43.40|57.25</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2-Audio</td>
    <td class="tg-0lax">3.74|3.43|35.71|35.72</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B</td>
    <td class="tg-0lax">4.49|3.93|<strong>55.71</strong>|<strong>61.32</strong></td>
  </tr>
  <tr>
    <td class="tg-0lax" rowspan="8">VoiceBench<br>OpenBookQA | IFEval | AdvBench | Avg</td>
    <td class="tg-0lax">Ultravox-v0.4.1-LLaMA-3.1-8B</td>
    <td class="tg-0lax">65.27|<strong>66.88</strong>|98.46|71.45</td>
  </tr>
  <tr>
    <td class="tg-0lax">MERaLiON</td>
    <td class="tg-0lax">27.23|62.93|94.81|62.91</td>
  </tr>
  <tr>
    <td class="tg-0lax">Megrez-3B-Omni</td>
    <td class="tg-0lax">28.35|25.71|87.69|46.25</td>
  </tr>
  <tr>
    <td class="tg-0lax">Lyra-Base</td>
    <td class="tg-0lax">72.75|36.28|59.62|57.66</td>
  </tr>
  <tr>
    <td class="tg-0lax">MiniCPM-o</td>
    <td class="tg-0lax">78.02|49.25|97.69|71.69</td>
  </tr>
  <tr>
    <td class="tg-0lax">Baichuan-Omni-1.5</td>
    <td class="tg-0lax">74.51|54.54|97.31|71.14</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2-Audio</td>
    <td class="tg-0lax">49.45|26.33|96.73|55.35</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B</td>
    <td class="tg-0lax"><strong>81.10</strong>|52.87|<strong>99.42</strong>|<strong>74.12</strong></td>
  </tr>
</tbody></table>
</details>

<details>
<summary>Image -> Text</summary>

| Dataset                        | Qwen2.5-Omni-7B | Other Best | Qwen2.5-VL-7B | GPT-4o-mini | 
|--------------------------------|--------------|------------|---------------|-------------|
| MMMU<sub>val</sub>             | 59.2         | 53.9       | 58.6          | **60.0**    | 
| MMMU-Pro<sub>overall</sub>     | 36.6         | -          | **38.3**      | 37.6        | 
| MathVista<sub>testmini</sub>   | 67.9         | **71.9**   | 68.2          | 52.5        | 
| MathVision<sub>full</sub>      | 25.0         | 23.1       | **25.1**      | -           | 
| MMBench-V1.1-EN<sub>test</sub> | 81.8         | 80.5       | **82.6**      | 76.0        | 
| MMVet<sub>turbo</sub>          | 66.8         | **67.5**   | 67.1          | 66.9        | 
| MMStar                         | **64.0**     | **64.0**   | 63.9          | 54.8        | 
| MME<sub>sum</sub>              | 2340         | **2372**   | 2347          | 2003        | 
| MuirBench                      | 59.2         | -          | **59.2**      | -           | 
| CRPE<sub>relation</sub>        | **76.5**     | -          | 76.4          | -           | 
| RealWorldQA<sub>avg</sub>      | 70.3         | **71.9**   | 68.5          | -           | 
| MME-RealWorld<sub>en</sub>     | **61.6**     | -          | 57.4          | -           | 
| MM-MT-Bench                    | 6.0          | -          | **6.3**       | -           | 
| AI2D                           | 83.2         | **85.8**   | 83.9          | -           | 
| TextVQA<sub>val</sub>          | 84.4         | 83.2       | **84.9**      | -           | 
| DocVQA<sub>test</sub>          | 95.2         | 93.5       | **95.7**      | -           | 
| ChartQA<sub>test Avg</sub>     | 85.3         | 84.9       | **87.3**      | -           | 
| OCRBench_V2<sub>en</sub>       | **57.8**     | -          | 56.3          | -           | 


| Dataset                  | Qwen2.5-Omni-7B | Qwen2.5-VL-7B | Grounding DINO | Gemini 1.5 Pro | 
|--------------------------|--------------|---------------|----------------|----------------|
| Refcoco<sub>val</sub>    | 90.5         | 90.0          | **90.6**       | 73.2           | 
| Refcoco<sub>textA</sub>  | **93.5**     | 92.5          | 93.2           | 72.9           | 
| Refcoco<sub>textB</sub>  | 86.6         | 85.4          | **88.2**       | 74.6           | 
| Refcoco+<sub>val</sub>   | 85.4         | 84.2          | **88.2**       | 62.5           | 
| Refcoco+<sub>textA</sub> | **91.0**     | 89.1          | 89.0           | 63.9           | 
| Refcoco+<sub>textB</sub> | **79.3**     | 76.9          | 75.9           | 65.0           | 
| Refcocog+<sub>val</sub>  | **87.4**     | 87.2          | 86.1           | 75.2           | 
| Refcocog+<sub>test</sub> | **87.9**     | 87.2          | 87.0           | 76.2           | 
| ODinW                    | 42.4         | 37.3          | **55.0**       | 36.7           | 
| PointGrounding           | 66.5         | **67.3**      | -              | -              | 
</details>


<details>
<summary>Video(without audio) -> Text</summary>

| Dataset                     | Qwen2.5-Omni-7B | Other Best | Qwen2.5-VL-7B | GPT-4o-mini | 
|-----------------------------|--------------|------------|---------------|-------------|
| Video-MME<sub>w/o sub</sub> | 64.3         | 63.9       | **65.1**      | 64.8        | 
| Video-MME<sub>w sub</sub>   | **72.4**     | 67.9       | 71.6          | -           | 
| MVBench                     | **70.3**     | 67.2       | 69.6          | -           | 
| EgoSchema<sub>test</sub>    | **68.6**     | 63.2       | 65.0          | -           | 
</details>

<details>
<summary>Zero-shot Speech Generation</summary>


<table class="tg"><thead>
  <tr>
    <th class="tg-0lax">Datasets</th>
    <th class="tg-0lax">Model</th>
    <th class="tg-0lax">Performance</th>
  </tr></thead>
<tbody>
  <tr>
    <td class="tg-9j4x" colspan="3">Content Consistency</td>
  </tr>
  <tr>
    <td class="tg-0lax" rowspan="9">SEED<br>test-zh | test-en | test-hard </td>
    <td class="tg-0lax">Seed-TTS_ICL</td>
    <td class="tg-0lax">1.11 | 2.24 | 7.58</td>
  </tr>
  <tr>
    <td class="tg-0lax">Seed-TTS_RL</td>
    <td class="tg-0lax"><strong>1.00</strong> | 1.94 | <strong>6.42</strong></td>
  </tr>
  <tr>
    <td class="tg-0lax">MaskGCT</td>
    <td class="tg-0lax">2.27 | 2.62 | 10.27</td>
  </tr>
  <tr>
    <td class="tg-0lax">E2_TTS</td>
    <td class="tg-0lax">1.97 | 2.19 | -</td>
  </tr>
  <tr>
    <td class="tg-0lax">F5-TTS</td>
    <td class="tg-0lax">1.56 | <strong>1.83</strong> | 8.67</td>
  </tr>
  <tr>
    <td class="tg-0lax">CosyVoice 2</td>
    <td class="tg-0lax">1.45 | 2.57 | 6.83</td>
  </tr>
  <tr>
    <td class="tg-0lax">CosyVoice 2-S</td>
    <td class="tg-0lax">1.45 | 2.38 | 8.08</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B_ICL</td>
    <td class="tg-0lax">1.70 | 2.72 | 7.97</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B_RL</td>
    <td class="tg-0lax">1.42 | 2.32 | 6.54</td>
  </tr>
  <tr>
    <td class="tg-9j4x" colspan="3">Speaker Similarity</td>
  </tr>
  <tr>
    <td class="tg-0lax" rowspan="9">SEED<br>test-zh | test-en | test-hard </td>
    <td class="tg-0lax">Seed-TTS_ICL</td>
    <td class="tg-0lax">0.796 | 0.762 | 0.776</td>
  </tr>
  <tr>
    <td class="tg-0lax">Seed-TTS_RL</td>
    <td class="tg-0lax"><strong>0.801</strong> | <strong>0.766</strong> | <strong>0.782</strong></td>
  </tr>
  <tr>
    <td class="tg-0lax">MaskGCT</td>
    <td class="tg-0lax">0.774 | 0.714 | 0.748</td>
  </tr>
  <tr>
    <td class="tg-0lax">E2_TTS</td>
    <td class="tg-0lax">0.730 | 0.710 | -</td>
  </tr>
  <tr>
    <td class="tg-0lax">F5-TTS</td>
    <td class="tg-0lax">0.741 | 0.647 | 0.713</td>
  </tr>
  <tr>
    <td class="tg-0lax">CosyVoice 2</td>
    <td class="tg-0lax">0.748 | 0.652 | 0.724</td>
  </tr>
  <tr>
    <td class="tg-0lax">CosyVoice 2-S</td>
    <td class="tg-0lax">0.753 | 0.654 | 0.732</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B_ICL</td>
    <td class="tg-0lax">0.752 | 0.632 | 0.747</td>
  </tr>
  <tr>
    <td class="tg-0lax">Qwen2.5-Omni-7B_RL</td>
    <td class="tg-0lax">0.754 | 0.641 | 0.752</td>
  </tr>
</tbody></table>
</details>

<details>
<summary>Text -> Text</summary>

| Dataset                           | Qwen2.5-Omni-7B | Qwen2.5-7B | Qwen2-7B | Llama3.1-8B | Gemma2-9B | 
|-----------------------------------|-----------|------------|----------|-------------|-----------|
| MMLU-Pro                          | 47.0      | **56.3**   | 44.1     | 48.3        | 52.1      | 
| MMLU-redux                        | 71.0      | **75.4**   | 67.3     | 67.2        | 72.8      | 
| LiveBench<sub>0831</sub>          | 29.6      | **35.9**   | 29.2     | 26.7        | 30.6      | 
| GPQA                              | 30.8      | **36.4**   | 34.3     | 32.8        | 32.8      | 
| MATH                              | 71.5      | **75.5**   | 52.9     | 51.9        | 44.3      | 
| GSM8K                             | 88.7      | **91.6**   | 85.7     | 84.5        | 76.7      | 
| HumanEval                         | 78.7      | **84.8**   | 79.9     | 72.6        | 68.9      | 
| MBPP                              | 73.2      | **79.2**   | 67.2     | 69.6        | 74.9      | 
| MultiPL-E                         | 65.8      | **70.4**   | 59.1     | 50.7        | 53.4      | 
| LiveCodeBench<sub>2305-2409</sub> | 24.6      | **28.7**   | 23.9     | 8.3         | 18.9      | 
</details>

## Quickstart

Below, we provide simple examples to show how to use Qwen2.5-Omni with πŸ€— Transformers. The codes of Qwen2.5-Omni has been in the latest Hugging face transformers and we advise you to build from source with command:
```
pip uninstall transformers
pip install git+https://github.com/huggingface/transformers
pip install accelerate
```
or you might encounter the following error:
```
KeyError: 'qwen2_5_omni'
```


We offer a toolkit to help you handle various types of audio and visual input more conveniently, as if you were using an API. This includes base64, URLs, and interleaved audio, images and videos. You can install it using the following command and make sure your system has `ffmpeg` installed:

```bash
# It's highly recommended to use `[decord]` feature for faster video loading.
pip install qwen-omni-utils[decord] -U
```

If you are not using Linux, you might not be able to install `decord` from PyPI. In that case, you can use `pip install qwen-omni-utils -U` which will fall back to using torchvision for video processing. However, you can still [install decord from source](https://github.com/dmlc/decord?tab=readme-ov-file#install-from-source) to get decord used when loading video.

### πŸ€—  Transformers Usage

Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_omni_utils`:

```python
import soundfile as sf

from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor
from qwen_omni_utils import process_mm_info

# default: Load the model on the available device(s)
model = Qwen2_5OmniForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-Omni-7B", torch_dtype="auto", device_map="auto")

# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
#     "Qwen/Qwen2.5-Omni-7B",
#     torch_dtype="auto",
#     device_map="auto",
#     attn_implementation="flash_attention_2",
# )

processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B")

conversation = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
        ],
    },
    {
        "role": "user",
        "content": [
            {"type": "video", "video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/draw.mp4"},
        ],
    },
]

# set use audio in video
USE_AUDIO_IN_VIDEO = True

# Preparation for inference
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios, images, videos = process_mm_info(conversation, use_audio_in_video=USE_AUDIO_IN_VIDEO)
inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=USE_AUDIO_IN_VIDEO)
inputs = inputs.to(model.device).to(model.dtype)

# Inference: Generation of the output text and audio
text_ids, audio = model.generate(**inputs, use_audio_in_video=USE_AUDIO_IN_VIDEO)

text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(text)
sf.write(
    "output.wav",
    audio.reshape(-1).detach().cpu().numpy(),
    samplerate=24000,
)
```

<details>
<summary>Minimum GPU memory requirements</summary>

| Precision | 15(s) Video | 30(s) Video | 60(s) Video |
|-----------| ------------- | --------- | -------------- |
| FP32      | 93.56 GB      | Not Recommend | Not Recommend      |
| BF16      | 31.11 GB      | 41.85 GB  | 60.19 GB       |

Note: The table above presents the theoretical minimum memory requirements for inference with `transformers` and `BF16` is test with `attn_implementation="flash_attention_2"`; however, in practice, the actual memory usage is typically at least 1.2 times higher. For more information, see the linked resource [here](https://huggingface.co/docs/accelerate/main/en/usage_guides/model_size_estimator).
</details>  

<details>
<summary>Video URL resource usage</summary>

Video URL compatibility largely depends on the third-party library version. The details are in the table below. Change the backend by `FORCE_QWENVL_VIDEO_READER=torchvision` or `FORCE_QWENVL_VIDEO_READER=decord` if you prefer not to use the default one.

| Backend     | HTTP | HTTPS |
|-------------|------|-------|
| torchvision >= 0.19.0 | βœ…  | βœ…   |
| torchvision < 0.19.0  | ❌  | ❌   |
| decord      | βœ…  | ❌   |
</details>

<details>
<summary>Batch inference</summary>

The model can batch inputs composed of mixed samples of various types such as text, images, audio and videos as input when `return_audio=False` is set. Here is an example.

```python
# Sample messages for batch inference

# Conversation with video only
conversation1 = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
        ],
    },
    {
        "role": "user",
        "content": [
            {"type": "video", "video": "/path/to/video.mp4"},
        ]
    }
]

# Conversation with audio only
conversation2 = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
        ],
    },
    {
        "role": "user",
        "content": [
            {"type": "audio", "audio": "/path/to/audio.wav"},
        ]
    }
]

# Conversation with pure text
conversation3 = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
        ],
    },
    {
        "role": "user",
        "content": "who are you?"
    }
]


# Conversation with mixed media
conversation4 = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
        ],
    },
    {
        "role": "user",
        "content": [
            {"type": "image", "image": "/path/to/image.jpg"},
            {"type": "video", "video": "/path/to/video.mp4"},
            {"type": "audio", "audio": "/path/to/audio.wav"},
            {"type": "text", "text": "What are the elements can you see and hear in these medias?"},
        ],
    }
]

# Combine messages for batch processing
conversations = [conversation1, conversation2, conversation3, conversation4]

# set use audio in video
USE_AUDIO_IN_VIDEO = True

# Preparation for batch inference
text = processor.apply_chat_template(conversations, add_generation_prompt=True, tokenize=False)
audios, images, videos = process_mm_info(conversations, use_audio_in_video=USE_AUDIO_IN_VIDEO)

inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=USE_AUDIO_IN_VIDEO)
inputs = inputs.to(model.device).to(model.dtype)

# Batch Inference
text_ids = model.generate(**inputs, use_audio_in_video=USE_AUDIO_IN_VIDEO, return_audio=False)
text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(text)
```
</details>

### Usage Tips

#### Prompt for audio output
If users need audio output, the system prompt must be set as "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.", otherwise the audio output may not work as expected.
```
{
    "role": "system",
    "content": [
        {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
    ],
}
```
#### Use audio in video
In the process of multimodal interaction, the videos provided by users are often accompanied by audio (such as questions about the content in the video, or sounds generated by certain events in the video). This information is conducive to the model providing a better interactive experience. So we provide the following options for users to decide whether to use audio in video.
```python
# first place, in data preprocessing
audios, images, videos = process_mm_info(conversations, use_audio_in_video=True)
```
```python
# second place, in model processor
inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", 
                   padding=True, use_audio_in_video=True)
```
```python
#  third place, in model inference
text_ids, audio = model.generate(**inputs, use_audio_in_video=True)
```
It is worth noting that during a multi-round conversation, the `use_audio_in_video` parameter in these places must be set to the same, otherwise unexpected results will occur.

#### Use audio output or not

The model supports both text and audio outputs, if users do not need audio outputs, they can call `model.disable_talker()` after init the model. This option will save about `~2GB` of GPU memory but the `return_audio` option for `generate` function will only allow to be set at `False`.
```python
model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2.5-Omni-7B",
    torch_dtype="auto",
    device_map="auto"
)
model.disable_talker()
```

In order to obtain a flexible experience, we recommend that users can decide whether to return audio when `generate` function is called. If `return_audio` is set to `False`, the model will only return text outputs to get text responses faster.

```python
model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2.5-Omni-7B",
    torch_dtype="auto",
    device_map="auto"
)
...
text_ids = model.generate(**inputs, return_audio=False)
```

#### Change voice type of output audio
Qwen2.5-Omni supports the ability to change the voice of the output audio. The `"Qwen/Qwen2.5-Omni-7B"` checkpoint support two voice types as follow:

| Voice Type | Gender | Description |
|------------|--------|-------------|
| Chelsie    | Female | A honeyed, velvety voice that carries a gentle warmth and luminous clarity.|
| Ethan      | Male   | A bright, upbeat voice with infectious energy and a warm, approachable vibe.|

Users can use the `speaker` parameter of `generate` function to specify the voice type. By default, if `speaker` is not specified, the default voice type is `Chelsie`.

```python
text_ids, audio = model.generate(**inputs, speaker="Chelsie")
```

```python
text_ids, audio = model.generate(**inputs, speaker="Ethan")
```

#### Flash-Attention 2 to speed up generation

First, make sure to install the latest version of Flash Attention 2:

```bash
pip install -U flash-attn --no-build-isolation
```

Also, you should have hardware that is compatible with FlashAttention 2. Read more about it in the official documentation of the [flash attention repository](https://github.com/Dao-AILab/flash-attention). FlashAttention-2 can only be used when a model is loaded in `torch.float16` or `torch.bfloat16`.

To load and run a model using FlashAttention-2, add `attn_implementation="flash_attention_2"` when loading the model:

```python
from transformers import Qwen2_5OmniForConditionalGeneration

model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2.5-Omni-7B",
    device_map="auto",
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
)
```


## Citation

If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil: :)



```BibTeX

@article{Qwen2.5-Omni,
  title={Qwen2.5-Omni Technical Report},
  author={Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang Fan, Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, Junyang Lin},
  journal={arXiv preprint arXiv:2503.20215},
  year={2025}
}
```

<br>