File size: 3,844 Bytes
6a413de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# libraries
import random
import numpy as np
import pickle
import json
from flask import Flask, render_template, request
from flask_ngrok import run_with_ngrok
import nltk
from keras.models import load_model
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()


# chat initialization
model = load_model("chatbot_model.h5")
# intents = json.loads(open("intents.json").read())
data_file = open("F:\\Data Science Course - IIITB\\NLP\\Chatbot\\AI Chatbot\\An-AI-Chatbot-in-Python-and-Flask-main\\intents.json").read()
words = pickle.load(open("words.pkl", "rb"))
classes = pickle.load(open("classes.pkl", "rb"))

app = Flask(__name__)
# run_with_ngrok(app) 

@app.route("/")
def home():
    return render_template("index.html")


# @app.route("/get", methods=["POST"])
# def chatbot_response():
#     msg = request.form["msg"]
#     if msg.startswith('my name is'):
#         name = msg[11:]
#         ints = predict_class(msg, model)
#         res1 = getResponse(ints, intents)
#         res =res1.replace("{n}",name)
#     elif msg.startswith('hi my name is'):
#         name = msg[14:]
#         ints = predict_class(msg, model)
#         res1 = getResponse(ints, intents)
#         res =res1.replace("{n}",name)
#     else:
#         ints = predict_class(msg, model)
#         res = getResponse(ints, intents)
#     return res
#Updated

# ... Your previous code ...

@app.route("/get", methods=["POST"])
def chatbot_response():
    msg = request.form["msg"]

    # Load and process the intents JSON file
    data_file = open("F:\\Data Science Course - IIITB\\NLP\\Chatbot\\AI Chatbot\\An-AI-Chatbot-in-Python-and-Flask-main\\intents.json").read()
    intents = json.loads(data_file)

    # Rest of your existing code
    if msg.startswith('my name is'):
        name = msg[11:]
        ints = predict_class(msg, model)
        res1 = getResponse(ints, intents)
        res = res1.replace("{n}", name)
    elif msg.startswith('hi my name is'):
        name = msg[14:]
        ints = predict_class(msg, model)
        res1 = getResponse(ints, intents)
        res = res1.replace("{n}", name)
    else:
        ints = predict_class(msg, model)
        res = getResponse(ints, intents)
    return res

# chat functionalities
def clean_up_sentence(sentence):
    sentence_words = nltk.word_tokenize(sentence)
    sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
    return sentence_words


# return bag of words array: 0 or 1 for each word in the bag that exists in the sentence
def bow(sentence, words, show_details=True):
    # tokenize the pattern
    sentence_words = clean_up_sentence(sentence)
    # bag of words - matrix of N words, vocabulary matrix
    bag = [0] * len(words)
    for s in sentence_words:
        for i, w in enumerate(words):
            if w == s:
                # assign 1 if current word is in the vocabulary position
                bag[i] = 1
                if show_details:
                    print("found in bag: %s" % w)
    return np.array(bag)


def predict_class(sentence, model):
    # filter out predictions below a threshold
    p = bow(sentence, words, show_details=False)
    res = model.predict(np.array([p]))[0]
    ERROR_THRESHOLD = 0.25
    results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD]
    # sort by strength of probability
    results.sort(key=lambda x: x[1], reverse=True)
    return_list = []
    for r in results:
        return_list.append({"intent": classes[r[0]], "probability": str(r[1])})
    return return_list


def getResponse(ints, intents_json):
    tag = ints[0]["intent"]
    list_of_intents = intents_json["intents"]
    for i in list_of_intents:
        if i["tag"] == tag:
            result = random.choice(i["responses"])
            break
    return result


if __name__ == "__main__":
    app.run()