# libraries import random import numpy as np import pickle import json from flask import Flask, render_template, request from flask_ngrok import run_with_ngrok import nltk from keras.models import load_model from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() # chat initialization model = load_model("chatbot_model.h5") # intents = json.loads(open("intents.json").read()) data_file = open("F:\\Data Science Course - IIITB\\NLP\\Chatbot\\AI Chatbot\\An-AI-Chatbot-in-Python-and-Flask-main\\intents.json").read() words = pickle.load(open("words.pkl", "rb")) classes = pickle.load(open("classes.pkl", "rb")) app = Flask(__name__) # run_with_ngrok(app) @app.route("/") def home(): return render_template("index.html") # @app.route("/get", methods=["POST"]) # def chatbot_response(): # msg = request.form["msg"] # if msg.startswith('my name is'): # name = msg[11:] # ints = predict_class(msg, model) # res1 = getResponse(ints, intents) # res =res1.replace("{n}",name) # elif msg.startswith('hi my name is'): # name = msg[14:] # ints = predict_class(msg, model) # res1 = getResponse(ints, intents) # res =res1.replace("{n}",name) # else: # ints = predict_class(msg, model) # res = getResponse(ints, intents) # return res #Updated # ... Your previous code ... @app.route("/get", methods=["POST"]) def chatbot_response(): msg = request.form["msg"] # Load and process the intents JSON file data_file = open("F:\\Data Science Course - IIITB\\NLP\\Chatbot\\AI Chatbot\\An-AI-Chatbot-in-Python-and-Flask-main\\intents.json").read() intents = json.loads(data_file) # Rest of your existing code if msg.startswith('my name is'): name = msg[11:] ints = predict_class(msg, model) res1 = getResponse(ints, intents) res = res1.replace("{n}", name) elif msg.startswith('hi my name is'): name = msg[14:] ints = predict_class(msg, model) res1 = getResponse(ints, intents) res = res1.replace("{n}", name) else: ints = predict_class(msg, model) res = getResponse(ints, intents) return res # chat functionalities def clean_up_sentence(sentence): sentence_words = nltk.word_tokenize(sentence) sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words] return sentence_words # return bag of words array: 0 or 1 for each word in the bag that exists in the sentence def bow(sentence, words, show_details=True): # tokenize the pattern sentence_words = clean_up_sentence(sentence) # bag of words - matrix of N words, vocabulary matrix bag = [0] * len(words) for s in sentence_words: for i, w in enumerate(words): if w == s: # assign 1 if current word is in the vocabulary position bag[i] = 1 if show_details: print("found in bag: %s" % w) return np.array(bag) def predict_class(sentence, model): # filter out predictions below a threshold p = bow(sentence, words, show_details=False) res = model.predict(np.array([p]))[0] ERROR_THRESHOLD = 0.25 results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD] # sort by strength of probability results.sort(key=lambda x: x[1], reverse=True) return_list = [] for r in results: return_list.append({"intent": classes[r[0]], "probability": str(r[1])}) return return_list def getResponse(ints, intents_json): tag = ints[0]["intent"] list_of_intents = intents_json["intents"] for i in list_of_intents: if i["tag"] == tag: result = random.choice(i["responses"]) break return result if __name__ == "__main__": app.run()