Update README.md
Browse files
README.md
CHANGED
@@ -33,7 +33,8 @@ base_model: meta-llama/Meta-Llama-3.1-70B-Instruct
|
|
33 |
- **Model Developers:** Neural Magic
|
34 |
|
35 |
Quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
|
36 |
-
It
|
|
|
37 |
|
38 |
### Model Optimizations
|
39 |
|
@@ -132,15 +133,20 @@ model.save_pretrained("Meta-Llama-3.1-70B-Instruct-quantized.w8a8")
|
|
132 |
|
133 |
## Evaluation
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
**Note:** Results have been updated after Meta modified the chat template.
|
140 |
|
141 |
### Accuracy
|
142 |
|
143 |
-
#### Open LLM Leaderboard evaluation scores
|
144 |
<table>
|
145 |
<tr>
|
146 |
<td><strong>Benchmark</strong>
|
@@ -152,6 +158,20 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
152 |
<td><strong>Recovery</strong>
|
153 |
</td>
|
154 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
<tr>
|
156 |
<td>MMLU (5-shot)
|
157 |
</td>
|
@@ -232,6 +252,104 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
232 |
<td><strong>99.9%</strong>
|
233 |
</td>
|
234 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
</table>
|
236 |
|
237 |
### Reproduction
|
|
|
33 |
- **Model Developers:** Neural Magic
|
34 |
|
35 |
Quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
|
36 |
+
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model, including multiple-choice, math reasoning, and open-ended text generation.
|
37 |
+
Meta-Llama-3.1-70B-Instruct-quantized.w8a8 achieves 98.8% recovery for the Arena-Hard evaluation, 99.9% for OpenLLM v1 (using Meta's prompting when available), 100.0% for OpenLLM v2, 98.7% for HumanEval pass@1, and 98.9% for HumanEval+ pass@1.
|
38 |
|
39 |
### Model Optimizations
|
40 |
|
|
|
133 |
|
134 |
## Evaluation
|
135 |
|
136 |
+
This model was evaluated on the well-known Arena-Hard, OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval+ benchmarks.
|
137 |
+
In all cases, model outputs were generated with the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
138 |
+
Arena-Hard evaluations were conducted using the [Arena-Hard-Auto](https://github.com/lmarena/arena-hard-auto) repository.
|
139 |
+
The model generated a single answer for each prompt form Arena-Hard, and each answer was judged twice by GPT-4.
|
140 |
+
We report below the scores obtained in each judgement and the average.
|
141 |
+
OpenLLM v1 and v2 evaluations were conducted using Neural Magic's fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct).
|
142 |
+
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-70B-Instruct-evals) and a few fixes to OpenLLM v2 tasks.
|
143 |
+
HumanEval and HumanEval+ evaluations were conducted using Neural Magic's fork of the [EvalPlus](https://github.com/neuralmagic/evalplus) repository.
|
144 |
+
Detailed model outputs are available as HuggingFace datasets for [Arena-Hard](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-arena-hard-evals), [OpenLLM v2](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-leaderboard-v2-evals), and [HumanEval](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-humaneval-evals).
|
145 |
|
146 |
**Note:** Results have been updated after Meta modified the chat template.
|
147 |
|
148 |
### Accuracy
|
149 |
|
|
|
150 |
<table>
|
151 |
<tr>
|
152 |
<td><strong>Benchmark</strong>
|
|
|
158 |
<td><strong>Recovery</strong>
|
159 |
</td>
|
160 |
</tr>
|
161 |
+
<tr>
|
162 |
+
<td><strong>Arena Hard</strong>
|
163 |
+
</td>
|
164 |
+
<td>57.0 (55.8 / 58.2)
|
165 |
+
</td>
|
166 |
+
<td>56.3 (56.0 / 56.6)
|
167 |
+
</td>
|
168 |
+
<td>98.8%
|
169 |
+
</td>
|
170 |
+
</tr>
|
171 |
+
<tr>
|
172 |
+
<td><strong>OpenLLM v1</strong>
|
173 |
+
</td>
|
174 |
+
</tr>
|
175 |
<tr>
|
176 |
<td>MMLU (5-shot)
|
177 |
</td>
|
|
|
252 |
<td><strong>99.9%</strong>
|
253 |
</td>
|
254 |
</tr>
|
255 |
+
<tr>
|
256 |
+
<td><strong>OpenLLM v2</strong>
|
257 |
+
</td>
|
258 |
+
</tr>
|
259 |
+
<tr>
|
260 |
+
<td>MMLU-Pro
|
261 |
+
</td>
|
262 |
+
<td>48.1
|
263 |
+
</td>
|
264 |
+
<td>47.1
|
265 |
+
</td>
|
266 |
+
<td>97.9%
|
267 |
+
</td>
|
268 |
+
</tr>
|
269 |
+
<tr>
|
270 |
+
<td>IFEval
|
271 |
+
</td>
|
272 |
+
<td>86.4
|
273 |
+
</td>
|
274 |
+
<td>86.6
|
275 |
+
</td>
|
276 |
+
<td>100.2%
|
277 |
+
</td>
|
278 |
+
</tr>
|
279 |
+
<tr>
|
280 |
+
<td>BBH
|
281 |
+
</td>
|
282 |
+
<td>55.8
|
283 |
+
</td>
|
284 |
+
<td>55.2
|
285 |
+
</td>
|
286 |
+
<td>98.9%
|
287 |
+
</td>
|
288 |
+
</tr>
|
289 |
+
<tr>
|
290 |
+
<td>Math |v| 5
|
291 |
+
</td>
|
292 |
+
<td>26.1
|
293 |
+
</td>
|
294 |
+
<td>23.9
|
295 |
+
</td>
|
296 |
+
<td>91.8%
|
297 |
+
</td>
|
298 |
+
</tr>
|
299 |
+
<tr>
|
300 |
+
<td>GPQA ()
|
301 |
+
</td>
|
302 |
+
<td>15.4
|
303 |
+
</td>
|
304 |
+
<td>13.6
|
305 |
+
</td>
|
306 |
+
<td>88.4%
|
307 |
+
</td>
|
308 |
+
</tr>
|
309 |
+
<tr>
|
310 |
+
<td>MuSR (5-shot)
|
311 |
+
</td>
|
312 |
+
<td>18.2
|
313 |
+
</td>
|
314 |
+
<td>16.8
|
315 |
+
</td>
|
316 |
+
<td>92.6%
|
317 |
+
</td>
|
318 |
+
</tr>
|
319 |
+
<tr>
|
320 |
+
<td><strong>Average</strong>
|
321 |
+
</td>
|
322 |
+
<td><strong>41.7</strong>
|
323 |
+
</td>
|
324 |
+
<td><strong>40.5</strong>
|
325 |
+
</td>
|
326 |
+
<td><strong>97.3%</strong>
|
327 |
+
</td>
|
328 |
+
</tr>
|
329 |
+
<tr>
|
330 |
+
<td><strong>Coding</strong>
|
331 |
+
</td>
|
332 |
+
</tr>
|
333 |
+
<tr>
|
334 |
+
<td>HumanEval pass@1
|
335 |
+
</td>
|
336 |
+
<td>79.7
|
337 |
+
</td>
|
338 |
+
<td>78.7
|
339 |
+
</td>
|
340 |
+
<td>98.7%
|
341 |
+
</td>
|
342 |
+
</tr>
|
343 |
+
<tr>
|
344 |
+
<td>HumanEval+ pass@1
|
345 |
+
</td>
|
346 |
+
<td>74.8
|
347 |
+
</td>
|
348 |
+
<td>74.0
|
349 |
+
</td>
|
350 |
+
<td>98.9%
|
351 |
+
</td>
|
352 |
+
</tr>
|
353 |
</table>
|
354 |
|
355 |
### Reproduction
|