--- library_name: transformers license: apache-2.0 pipeline_tag: text-generation base_model: - Qwen/Qwen3-1.7B tags: - neuralmagic - redhat - llmcompressor - quantized - FP8 --- # Qwen3-1.7B-FP8-dynamic ## Model Overview - **Model Architecture:** Qwen3ForCausalLM - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Activation quantization:** FP8 - **Weight quantization:** FP8 - **Intended Use Cases:** - Reasoning. - Function calling. - Subject matter experts via fine-tuning. - Multilingual instruction following. - Translation. - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). - **Release Date:** 05/02/2025 - **Version:** 1.0 - **Model Developers:** RedHat (Neural Magic) ### Model Optimizations This model was obtained by quantizing activations and weights of [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) to FP8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%. Only weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme. The [llm-compressor](https://github.com/vllm-project/llm-compressor) library is used for quantization. ## Deployment This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "RedHatAI/Qwen3-1.7B-FP8-dynamic" number_gpus = 1 sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=20, min_p=0, max_tokens=256) messages = [ {"role": "user", "content": prompt} ] tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [{"role": "user", "content": "Give me a short introduction to large language model."}] prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) llm = LLM(model=model_id, tensor_parallel_size=number_gpus) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation
Creation details This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. ```python from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.transformers import oneshot from transformers import AutoModelForCausalLM, AutoTokenizer # Load model model_stub = "Qwen/Qwen3-1.7B" model_name = model_stub.split("/")[-1] model = AutoModelForCausalLM.from_pretrained(model_stub) tokenizer = AutoTokenizer.from_pretrained(model_stub) # Configure the quantization algorithm and scheme recipe = QuantizationModifier( ignore=["lm_head"], targets="Linear", scheme="FP8_dynamic", ) # Apply quantization oneshot( model=model, recipe=recipe, ) # Save to disk in compressed-tensors format save_path = model_name + "-FP8-dynamic" model.save_pretrained(save_path) tokenizer.save_pretrained(save_path) print(f"Model and tokenizer saved to: {save_path}") ```
## Evaluation The model was evaluated on the OpenLLM leaderboard tasks (versions 1 and 2), using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), and on reasoning tasks using [lighteval](https://github.com/neuralmagic/lighteval/tree/reasoning). [vLLM](https://docs.vllm.ai/en/stable/) was used for all evaluations.
Evaluation details **lm-evaluation-harness** ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Qwen3-1.7B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \ --tasks openllm \ --apply_chat_template\ --fewshot_as_multiturn \ --batch_size auto ``` ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Qwen3-1.7B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \ --tasks mgsm \ --apply_chat_template\ --batch_size auto ``` ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Qwen3-1.7B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=16384,enable_chunk_prefill=True,tensor_parallel_size=1 \ --tasks leaderboard \ --apply_chat_template\ --fewshot_as_multiturn \ --batch_size auto ``` **lighteval** lighteval_model_arguments.yaml ```yaml model_parameters: model_name: RedHatAI/Qwen3-1.7B-FP8-dynamic dtype: auto gpu_memory_utilization: 0.9 max_model_length: 40960 generation_parameters: temperature: 0.6 top_k: 20 min_p: 0.0 top_p: 0.95 max_new_tokens: 32768 ``` ``` lighteval vllm \ --model_args lighteval_model_arguments.yaml \ --tasks lighteval|aime24|0|0 \ --use_chat_template = true ``` ``` lighteval vllm \ --model_args lighteval_model_arguments.yaml \ --tasks lighteval|aime25|0|0 \ --use_chat_template = true ``` ``` lighteval vllm \ --model_args lighteval_model_arguments.yaml \ --tasks lighteval|math_500|0|0 \ --use_chat_template = true ``` ``` lighteval vllm \ --model_args lighteval_model_arguments.yaml \ --tasks lighteval|gpqa:diamond|0|0 \ --use_chat_template = true ``` ``` lighteval vllm \ --model_args lighteval_model_arguments.yaml \ --tasks extended|lcb:codegeneration \ --use_chat_template = true ```
### Accuracy
Category Benchmark Qwen3-1.7B Qwen3-1.7B-FP8-dynamic
(this model)
Recovery
OpenLLM v1 MMLU (5-shot) 56.82 56.02 98.6%
ARC Challenge (25-shot) 43.00 42.83 99.6%
GSM-8K (5-shot, strict-match) 43.67 41.47 95.0%
Hellaswag (10-shot) 48.08 48.11 100.1%
Winogrande (5-shot) 58.01 57.70 99.5%
TruthfulQA (0-shot, mc2) 49.35 48.60 98.5%
Average 49.82 49.12 98.6%
OpenLLM v2 MMLU-Pro (5-shot) 23.45 21.38 91.1%
IFEval (0-shot) 71.08 70.93 99.8%
BBH (3-shot) 7.13 5.41 ---
Math-lvl-5 (4-shot) 35.91 34.71 96.7%
GPQA (0-shot) 0.11 0.00 ---
MuSR (0-shot) 7.97 7.18 ---
Average 24.28 23.27 95.8%
Multilingual MGSM (0-shot) 22.10
Reasoning
(generation)
AIME 2024 43.96 40.10 91.2%
AIME 2025 32.29 32.29 100.0%
GPQA diamond 38.38 38.89 101.3%
Math-lvl-5 89.00 88.80 99.8%
LiveCodeBench 33.44