File size: 1,293 Bytes
983b2e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3db5b9
 
 
 
 
 
 
983b2e4
 
 
 
 
 
 
e3db5b9
bc1e1cb
e3db5b9
 
bc1e1cb
e3db5b9
 
 
983b2e4
 
 
 
 
 
 
 
e3db5b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
base_model: CompVis/stable-diffusion-v1-4
library_name: diffusers
license: creativeml-openrail-m
inference: true
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- diffusers-training
- lora
---

<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->


# LoRA text2image fine-tuning - RiddleHe/SD14_pathology_lora
These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were fine-tuned on the None dataset. You can find some example images in the following. 

<table>
<tr>
<td><img src="./image_1.png"></td>
<td><img src="./image_2.png"></td>
<td><img src="./image_3.png"></td>
</tr>
</table>


## Intended uses & limitations

#### How to use

```python
pipe = DiffusionPipeline.from_pretrained(
  "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16
)

pipe.load_lora_weights("RiddleHe/SD14_pathology_lora")
pipe.to('cuda')

prompt = "A histopathology image of breast cancer tissue"
```

#### Limitations and bias

[TODO: provide examples of latent issues and potential remediations]

## Training details

This model is trained on 28216 breast cancer tissue images from the BRCA dataset.