RomainDarous commited on
Commit
4f108a7
·
verified ·
1 Parent(s): 7d0df90

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_MultiHeadGeneralizedPooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "sentence_dim": 768,
3
+ "token_dim": 768,
4
+ "num_heads": 8,
5
+ "initialize": 1,
6
+ "pooling_type": 1
7
+ }
README.md ADDED
@@ -0,0 +1,1006 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ - en
5
+ - es
6
+ - fr
7
+ - it
8
+ - nl
9
+ - pl
10
+ - pt
11
+ - ru
12
+ - zh
13
+ tags:
14
+ - sentence-transformers
15
+ - sentence-similarity
16
+ - feature-extraction
17
+ - generated_from_trainer
18
+ - dataset_size:51741
19
+ - loss:CoSENTLoss
20
+ base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
21
+ widget:
22
+ - source_sentence: Starsza para azjatycka pozuje z noworodkiem przy stole obiadowym.
23
+ sentences:
24
+ - Koszykarz ma zamiar zdobyć punkty dla swojej drużyny.
25
+ - Grupa starszych osób pozuje wokół stołu w jadalni.
26
+ - Możliwe, że układ słoneczny taki jak nasz może istnieć poza galaktyką.
27
+ - source_sentence: Englisch arbeitet überall mit Menschen, die Dinge kaufen und verkaufen,
28
+ und in der Gastfreundschaft und im Tourismusgeschäft.
29
+ sentences:
30
+ - Ich bin in Maharashtra (einschließlich Mumbai) und Andhra Pradesh herumgereist,
31
+ und ich hatte kein Problem damit, nur mit Englisch auszukommen.
32
+ - 'Ein griechischsprachiger Sklave (δούλος, doulos) würde seinen Herrn, glaube ich,
33
+ κύριος nennen (translit: kurios; Herr, Herr, Herr, Herr; Vokativform: κύριε).'
34
+ - Das Paar lag auf dem Bett.
35
+ - source_sentence: Si vous vous comprenez et comprenez votre ennemi, vous aurez beaucoup
36
+ plus de chances de gagner n'importe quelle bataille.
37
+ sentences:
38
+ - 'Outre les probabilités de gagner une bataille théorique, cette citation a une
39
+ autre signification : l''importance de connaître/comprendre les autres.'
40
+ - Une femme et un chien se promènent ensemble.
41
+ - Un homme joue de la guitare.
42
+ - source_sentence: Un homme joue de la harpe.
43
+ sentences:
44
+ - Une femme joue de la guitare.
45
+ - une femme a un enfant.
46
+ - Un groupe de personnes est debout et assis sur le sol la nuit.
47
+ - source_sentence: Dois cães a lutar na neve.
48
+ sentences:
49
+ - Dois cães brincam na neve.
50
+ - Pode sempre perguntar, então é a escolha do autor a aceitar ou não.
51
+ - Um gato está a caminhar sobre chão de madeira dura.
52
+ datasets:
53
+ - PhilipMay/stsb_multi_mt
54
+ pipeline_tag: sentence-similarity
55
+ library_name: sentence-transformers
56
+ metrics:
57
+ - pearson_cosine
58
+ - spearman_cosine
59
+ model-index:
60
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
61
+ results:
62
+ - task:
63
+ type: semantic-similarity
64
+ name: Semantic Similarity
65
+ dataset:
66
+ name: sts test
67
+ type: sts-test
68
+ metrics:
69
+ - type: pearson_cosine
70
+ value: 0.7692321507082782
71
+ name: Pearson Cosine
72
+ - type: spearman_cosine
73
+ value: 0.7754664383435602
74
+ name: Spearman Cosine
75
+ - type: pearson_cosine
76
+ value: 0.744008191409292
77
+ name: Pearson Cosine
78
+ - type: spearman_cosine
79
+ value: 0.7432706720166963
80
+ name: Spearman Cosine
81
+ - type: pearson_cosine
82
+ value: 0.7776852512001898
83
+ name: Pearson Cosine
84
+ - type: spearman_cosine
85
+ value: 0.76766489827043
86
+ name: Spearman Cosine
87
+ - type: pearson_cosine
88
+ value: 0.8314297687820957
89
+ name: Pearson Cosine
90
+ - type: spearman_cosine
91
+ value: 0.8277691429963476
92
+ name: Spearman Cosine
93
+ - type: pearson_cosine
94
+ value: 0.6929213209527071
95
+ name: Pearson Cosine
96
+ - type: spearman_cosine
97
+ value: 0.7054612855633249
98
+ name: Spearman Cosine
99
+ - type: pearson_cosine
100
+ value: 0.7918682837845359
101
+ name: Pearson Cosine
102
+ - type: spearman_cosine
103
+ value: 0.7976160149852088
104
+ name: Spearman Cosine
105
+ - type: pearson_cosine
106
+ value: 0.8513155698871028
107
+ name: Pearson Cosine
108
+ - type: spearman_cosine
109
+ value: 0.8484524209199422
110
+ name: Spearman Cosine
111
+ - type: pearson_cosine
112
+ value: 0.7935251833509375
113
+ name: Pearson Cosine
114
+ - type: spearman_cosine
115
+ value: 0.7822969529870586
116
+ name: Spearman Cosine
117
+ - type: pearson_cosine
118
+ value: 0.7881663420573638
119
+ name: Pearson Cosine
120
+ - type: spearman_cosine
121
+ value: 0.7773593792885142
122
+ name: Spearman Cosine
123
+ - type: pearson_cosine
124
+ value: 0.7890643648864227
125
+ name: Pearson Cosine
126
+ - type: spearman_cosine
127
+ value: 0.7837157606570725
128
+ name: Spearman Cosine
129
+ ---
130
+
131
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
132
+
133
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) and [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
134
+
135
+ ## Model Details
136
+
137
+ ### Model Description
138
+ - **Model Type:** Sentence Transformer
139
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 84fccfe766bcfd679e39efefe4ebf45af190ad2d -->
140
+ - **Maximum Sequence Length:** 128 tokens
141
+ - **Output Dimensionality:** 768 dimensions
142
+ - **Similarity Function:** Cosine Similarity
143
+ - **Training Datasets:**
144
+ - [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
145
+ - [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
146
+ - [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
147
+ - [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
148
+ - [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
149
+ - [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
150
+ - [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
151
+ - [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
152
+ - [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
153
+ - **Languages:** de, en, es, fr, it, nl, pl, pt, ru, zh
154
+ <!-- - **License:** Unknown -->
155
+
156
+ ### Model Sources
157
+
158
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
159
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
160
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
161
+
162
+ ### Full Model Architecture
163
+
164
+ ```
165
+ SentenceTransformer(
166
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
167
+ (1): MultiHeadGeneralizedPooling()
168
+ )
169
+ ```
170
+
171
+ ## Usage
172
+
173
+ ### Direct Usage (Sentence Transformers)
174
+
175
+ First install the Sentence Transformers library:
176
+
177
+ ```bash
178
+ pip install -U sentence-transformers
179
+ ```
180
+
181
+ Then you can load this model and run inference.
182
+ ```python
183
+ from sentence_transformers import SentenceTransformer
184
+
185
+ # Download from the 🤗 Hub
186
+ model = SentenceTransformer("RomainDarous/large_directOneEpoch_maxPooling_stsModel")
187
+ # Run inference
188
+ sentences = [
189
+ 'Dois cães a lutar na neve.',
190
+ 'Dois cães brincam na neve.',
191
+ 'Pode sempre perguntar, então é a escolha do autor a aceitar ou não.',
192
+ ]
193
+ embeddings = model.encode(sentences)
194
+ print(embeddings.shape)
195
+ # [3, 768]
196
+
197
+ # Get the similarity scores for the embeddings
198
+ similarities = model.similarity(embeddings, embeddings)
199
+ print(similarities.shape)
200
+ # [3, 3]
201
+ ```
202
+
203
+ <!--
204
+ ### Direct Usage (Transformers)
205
+
206
+ <details><summary>Click to see the direct usage in Transformers</summary>
207
+
208
+ </details>
209
+ -->
210
+
211
+ <!--
212
+ ### Downstream Usage (Sentence Transformers)
213
+
214
+ You can finetune this model on your own dataset.
215
+
216
+ <details><summary>Click to expand</summary>
217
+
218
+ </details>
219
+ -->
220
+
221
+ <!--
222
+ ### Out-of-Scope Use
223
+
224
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
225
+ -->
226
+
227
+ ## Evaluation
228
+
229
+ ### Metrics
230
+
231
+ #### Semantic Similarity
232
+
233
+ * Dataset: `sts-test`
234
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
235
+
236
+ | Metric | Value |
237
+ |:--------------------|:-----------|
238
+ | pearson_cosine | 0.7692 |
239
+ | **spearman_cosine** | **0.7755** |
240
+
241
+ #### Semantic Similarity
242
+
243
+ * Dataset: `sts-test`
244
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
245
+
246
+ | Metric | Value |
247
+ |:--------------------|:-----------|
248
+ | pearson_cosine | 0.744 |
249
+ | **spearman_cosine** | **0.7433** |
250
+
251
+ #### Semantic Similarity
252
+
253
+ * Dataset: `sts-test`
254
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
255
+
256
+ | Metric | Value |
257
+ |:--------------------|:-----------|
258
+ | pearson_cosine | 0.7777 |
259
+ | **spearman_cosine** | **0.7677** |
260
+
261
+ #### Semantic Similarity
262
+
263
+ * Dataset: `sts-test`
264
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
265
+
266
+ | Metric | Value |
267
+ |:--------------------|:-----------|
268
+ | pearson_cosine | 0.8314 |
269
+ | **spearman_cosine** | **0.8278** |
270
+
271
+ #### Semantic Similarity
272
+
273
+ * Dataset: `sts-test`
274
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
275
+
276
+ | Metric | Value |
277
+ |:--------------------|:-----------|
278
+ | pearson_cosine | 0.6929 |
279
+ | **spearman_cosine** | **0.7055** |
280
+
281
+ #### Semantic Similarity
282
+
283
+ * Dataset: `sts-test`
284
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
285
+
286
+ | Metric | Value |
287
+ |:--------------------|:-----------|
288
+ | pearson_cosine | 0.7919 |
289
+ | **spearman_cosine** | **0.7976** |
290
+
291
+ #### Semantic Similarity
292
+
293
+ * Dataset: `sts-test`
294
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
295
+
296
+ | Metric | Value |
297
+ |:--------------------|:-----------|
298
+ | pearson_cosine | 0.8513 |
299
+ | **spearman_cosine** | **0.8485** |
300
+
301
+ #### Semantic Similarity
302
+
303
+ * Dataset: `sts-test`
304
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
305
+
306
+ | Metric | Value |
307
+ |:--------------------|:-----------|
308
+ | pearson_cosine | 0.7935 |
309
+ | **spearman_cosine** | **0.7823** |
310
+
311
+ #### Semantic Similarity
312
+
313
+ * Dataset: `sts-test`
314
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
315
+
316
+ | Metric | Value |
317
+ |:--------------------|:-----------|
318
+ | pearson_cosine | 0.7882 |
319
+ | **spearman_cosine** | **0.7774** |
320
+
321
+ #### Semantic Similarity
322
+
323
+ * Dataset: `sts-test`
324
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
325
+
326
+ | Metric | Value |
327
+ |:--------------------|:-----------|
328
+ | pearson_cosine | 0.7891 |
329
+ | **spearman_cosine** | **0.7837** |
330
+
331
+ <!--
332
+ ## Bias, Risks and Limitations
333
+
334
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
335
+ -->
336
+
337
+ <!--
338
+ ### Recommendations
339
+
340
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
341
+ -->
342
+
343
+ ## Training Details
344
+
345
+ ### Training Datasets
346
+ <details><summary>multi_stsb_de</summary>
347
+
348
+ #### multi_stsb_de
349
+
350
+ * Dataset: [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
351
+ * Size: 5,749 training samples
352
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
353
+ * Approximate statistics based on the first 1000 samples:
354
+ | | sentence1 | sentence2 | score |
355
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
356
+ | type | string | string | float |
357
+ | details | <ul><li>min: 5 tokens</li><li>mean: 11.58 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.53 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
358
+ * Samples:
359
+ | sentence1 | sentence2 | score |
360
+ |:---------------------------------------------------------------|:--------------------------------------------------------------------------|:--------------------------------|
361
+ | <code>Ein Flugzeug hebt gerade ab.</code> | <code>Ein Flugzeug hebt gerade ab.</code> | <code>1.0</code> |
362
+ | <code>Ein Mann spielt eine große Flöte.</code> | <code>Ein Mann spielt eine Flöte.</code> | <code>0.7599999904632568</code> |
363
+ | <code>Ein Mann streicht geriebenen Käse auf eine Pizza.</code> | <code>Ein Mann streicht geriebenen Käse auf eine ungekochte Pizza.</code> | <code>0.7599999904632568</code> |
364
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
365
+ ```json
366
+ {
367
+ "scale": 20.0,
368
+ "similarity_fct": "pairwise_cos_sim"
369
+ }
370
+ ```
371
+ </details>
372
+ <details><summary>multi_stsb_es</summary>
373
+
374
+ #### multi_stsb_es
375
+
376
+ * Dataset: [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
377
+ * Size: 5,749 training samples
378
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
379
+ * Approximate statistics based on the first 1000 samples:
380
+ | | sentence1 | sentence2 | score |
381
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
382
+ | type | string | string | float |
383
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.21 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.07 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
384
+ * Samples:
385
+ | sentence1 | sentence2 | score |
386
+ |:----------------------------------------------------------------|:----------------------------------------------------------------------|:--------------------------------|
387
+ | <code>Un avión está despegando.</code> | <code>Un avión está despegando.</code> | <code>1.0</code> |
388
+ | <code>Un hombre está tocando una gran flauta.</code> | <code>Un hombre está tocando una flauta.</code> | <code>0.7599999904632568</code> |
389
+ | <code>Un hombre está untando queso rallado en una pizza.</code> | <code>Un hombre está untando queso rallado en una pizza cruda.</code> | <code>0.7599999904632568</code> |
390
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
391
+ ```json
392
+ {
393
+ "scale": 20.0,
394
+ "similarity_fct": "pairwise_cos_sim"
395
+ }
396
+ ```
397
+ </details>
398
+ <details><summary>multi_stsb_fr</summary>
399
+
400
+ #### multi_stsb_fr
401
+
402
+ * Dataset: [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
403
+ * Size: 5,749 training samples
404
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
405
+ * Approximate statistics based on the first 1000 samples:
406
+ | | sentence1 | sentence2 | score |
407
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
408
+ | type | string | string | float |
409
+ | details | <ul><li>min: 6 tokens</li><li>mean: 12.6 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.49 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
410
+ * Samples:
411
+ | sentence1 | sentence2 | score |
412
+ |:-----------------------------------------------------------|:---------------------------------------------------------------------|:--------------------------------|
413
+ | <code>Un avion est en train de décoller.</code> | <code>Un avion est en train de décoller.</code> | <code>1.0</code> |
414
+ | <code>Un homme joue d'une grande flûte.</code> | <code>Un homme joue de la flûte.</code> | <code>0.7599999904632568</code> |
415
+ | <code>Un homme étale du fromage râpé sur une pizza.</code> | <code>Un homme étale du fromage râpé sur une pizza non cuite.</code> | <code>0.7599999904632568</code> |
416
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
417
+ ```json
418
+ {
419
+ "scale": 20.0,
420
+ "similarity_fct": "pairwise_cos_sim"
421
+ }
422
+ ```
423
+ </details>
424
+ <details><summary>multi_stsb_it</summary>
425
+
426
+ #### multi_stsb_it
427
+
428
+ * Dataset: [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
429
+ * Size: 5,749 training samples
430
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
431
+ * Approximate statistics based on the first 1000 samples:
432
+ | | sentence1 | sentence2 | score |
433
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
434
+ | type | string | string | float |
435
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.77 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 12.69 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
436
+ * Samples:
437
+ | sentence1 | sentence2 | score |
438
+ |:--------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------|
439
+ | <code>Un aereo sta decollando.</code> | <code>Un aereo sta decollando.</code> | <code>1.0</code> |
440
+ | <code>Un uomo sta suonando un grande flauto.</code> | <code>Un uomo sta suonando un flauto.</code> | <code>0.7599999904632568</code> |
441
+ | <code>Un uomo sta spalmando del formaggio a pezzetti su una pizza.</code> | <code>Un uomo sta spalmando del formaggio a pezzetti su una pizza non cotta.</code> | <code>0.7599999904632568</code> |
442
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
443
+ ```json
444
+ {
445
+ "scale": 20.0,
446
+ "similarity_fct": "pairwise_cos_sim"
447
+ }
448
+ ```
449
+ </details>
450
+ <details><summary>multi_stsb_nl</summary>
451
+
452
+ #### multi_stsb_nl
453
+
454
+ * Dataset: [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
455
+ * Size: 5,749 training samples
456
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
457
+ * Approximate statistics based on the first 1000 samples:
458
+ | | sentence1 | sentence2 | score |
459
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
460
+ | type | string | string | float |
461
+ | details | <ul><li>min: 6 tokens</li><li>mean: 11.67 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.55 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
462
+ * Samples:
463
+ | sentence1 | sentence2 | score |
464
+ |:--------------------------------------------------------|:--------------------------------------------------------------------|:--------------------------------|
465
+ | <code>Er gaat een vliegtuig opstijgen.</code> | <code>Er gaat een vliegtuig opstijgen.</code> | <code>1.0</code> |
466
+ | <code>Een man speelt een grote fluit.</code> | <code>Een man speelt fluit.</code> | <code>0.7599999904632568</code> |
467
+ | <code>Een man smeert geraspte kaas op een pizza.</code> | <code>Een man strooit geraspte kaas op een ongekookte pizza.</code> | <code>0.7599999904632568</code> |
468
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
469
+ ```json
470
+ {
471
+ "scale": 20.0,
472
+ "similarity_fct": "pairwise_cos_sim"
473
+ }
474
+ ```
475
+ </details>
476
+ <details><summary>multi_stsb_pl</summary>
477
+
478
+ #### multi_stsb_pl
479
+
480
+ * Dataset: [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
481
+ * Size: 5,749 training samples
482
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
483
+ * Approximate statistics based on the first 1000 samples:
484
+ | | sentence1 | sentence2 | score |
485
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
486
+ | type | string | string | float |
487
+ | details | <ul><li>min: 5 tokens</li><li>mean: 12.2 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 12.11 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
488
+ * Samples:
489
+ | sentence1 | sentence2 | score |
490
+ |:-----------------------------------------------------------|:------------------------------------------------------------------------|:--------------------------------|
491
+ | <code>Samolot wystartował.</code> | <code>Samolot wystartował.</code> | <code>1.0</code> |
492
+ | <code>Człowiek gra na dużym flecie.</code> | <code>Człowiek gra na flecie.</code> | <code>0.7599999904632568</code> |
493
+ | <code>Mężczyzna rozsiewa na pizzy rozdrobniony ser.</code> | <code>Mężczyzna rozsiewa rozdrobniony ser na niegotowanej pizzy.</code> | <code>0.7599999904632568</code> |
494
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
495
+ ```json
496
+ {
497
+ "scale": 20.0,
498
+ "similarity_fct": "pairwise_cos_sim"
499
+ }
500
+ ```
501
+ </details>
502
+ <details><summary>multi_stsb_pt</summary>
503
+
504
+ #### multi_stsb_pt
505
+
506
+ * Dataset: [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
507
+ * Size: 5,749 training samples
508
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
509
+ * Approximate statistics based on the first 1000 samples:
510
+ | | sentence1 | sentence2 | score |
511
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
512
+ | type | string | string | float |
513
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.33 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.29 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
514
+ * Samples:
515
+ | sentence1 | sentence2 | score |
516
+ |:------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------|
517
+ | <code>Um avião está a descolar.</code> | <code>Um avião aéreo está a descolar.</code> | <code>1.0</code> |
518
+ | <code>Um homem está a tocar uma grande flauta.</code> | <code>Um homem está a tocar uma flauta.</code> | <code>0.7599999904632568</code> |
519
+ | <code>Um homem está a espalhar queijo desfiado numa pizza.</code> | <code>Um homem está a espalhar queijo desfiado sobre uma pizza não cozida.</code> | <code>0.7599999904632568</code> |
520
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
521
+ ```json
522
+ {
523
+ "scale": 20.0,
524
+ "similarity_fct": "pairwise_cos_sim"
525
+ }
526
+ ```
527
+ </details>
528
+ <details><summary>multi_stsb_ru</summary>
529
+
530
+ #### multi_stsb_ru
531
+
532
+ * Dataset: [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
533
+ * Size: 5,749 training samples
534
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
535
+ * Approximate statistics based on the first 1000 samples:
536
+ | | sentence1 | sentence2 | score |
537
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
538
+ | type | string | string | float |
539
+ | details | <ul><li>min: 5 tokens</li><li>mean: 11.19 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.17 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
540
+ * Samples:
541
+ | sentence1 | sentence2 | score |
542
+ |:------------------------------------------------|:---------------------------------------------------------------------|:--------------------------------|
543
+ | <code>Самолет взлетает.</code> | <code>Взлетает самолет.</code> | <code>1.0</code> |
544
+ | <code>Человек играет на большой флейте.</code> | <code>Человек играет на флейте.</code> | <code>0.7599999904632568</code> |
545
+ | <code>Мужчина разбрасывает сыр на пиццу.</code> | <code>Мужчина разбрасывает измельченный сыр на вареную пиццу.</code> | <code>0.7599999904632568</code> |
546
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
547
+ ```json
548
+ {
549
+ "scale": 20.0,
550
+ "similarity_fct": "pairwise_cos_sim"
551
+ }
552
+ ```
553
+ </details>
554
+ <details><summary>multi_stsb_zh</summary>
555
+
556
+ #### multi_stsb_zh
557
+
558
+ * Dataset: [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
559
+ * Size: 5,749 training samples
560
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
561
+ * Approximate statistics based on the first 1000 samples:
562
+ | | sentence1 | sentence2 | score |
563
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
564
+ | type | string | string | float |
565
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.7 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 10.79 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
566
+ * Samples:
567
+ | sentence1 | sentence2 | score |
568
+ |:------------------------------|:----------------------------------|:--------------------------------|
569
+ | <code>一架飞机正在起飞。</code> | <code>一架飞机正在起飞。</code> | <code>1.0</code> |
570
+ | <code>一个男人正在吹一支大笛子。</code> | <code>一个人在吹笛子。</code> | <code>0.7599999904632568</code> |
571
+ | <code>一名男子正在比萨饼上涂抹奶酪丝。</code> | <code>一名男子正在将奶酪丝涂抹在未熟的披萨上。</code> | <code>0.7599999904632568</code> |
572
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
573
+ ```json
574
+ {
575
+ "scale": 20.0,
576
+ "similarity_fct": "pairwise_cos_sim"
577
+ }
578
+ ```
579
+ </details>
580
+
581
+ ### Evaluation Datasets
582
+ <details><summary>multi_stsb_de</summary>
583
+
584
+ #### multi_stsb_de
585
+
586
+ * Dataset: [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
587
+ * Size: 1,500 evaluation samples
588
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
589
+ * Approximate statistics based on the first 1000 samples:
590
+ | | sentence1 | sentence2 | score |
591
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
592
+ | type | string | string | float |
593
+ | details | <ul><li>min: 5 tokens</li><li>mean: 18.25 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.25 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
594
+ * Samples:
595
+ | sentence1 | sentence2 | score |
596
+ |:-------------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------|
597
+ | <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>1.0</code> |
598
+ | <code>Ein kleines Kind reitet auf einem Pferd.</code> | <code>Ein Kind reitet auf einem Pferd.</code> | <code>0.949999988079071</code> |
599
+ | <code>Ein Mann verfüttert eine Maus an eine Schlange.</code> | <code>Der Mann füttert die Schlange mit einer Maus.</code> | <code>1.0</code> |
600
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
601
+ ```json
602
+ {
603
+ "scale": 20.0,
604
+ "similarity_fct": "pairwise_cos_sim"
605
+ }
606
+ ```
607
+ </details>
608
+ <details><summary>multi_stsb_es</summary>
609
+
610
+ #### multi_stsb_es
611
+
612
+ * Dataset: [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
613
+ * Size: 1,500 evaluation samples
614
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
615
+ * Approximate statistics based on the first 1000 samples:
616
+ | | sentence1 | sentence2 | score |
617
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
618
+ | type | string | string | float |
619
+ | details | <ul><li>min: 7 tokens</li><li>mean: 17.98 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 17.86 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
620
+ * Samples:
621
+ | sentence1 | sentence2 | score |
622
+ |:----------------------------------------------------------------------|:---------------------------------------------------------------------|:-------------------------------|
623
+ | <code>Un hombre con un casco está bailando.</code> | <code>Un hombre con un casco está bailando.</code> | <code>1.0</code> |
624
+ | <code>Un niño pequeño está montando a caballo.</code> | <code>Un niño está montando a caballo.</code> | <code>0.949999988079071</code> |
625
+ | <code>Un hombre está alimentando a una serpiente con un ratón.</code> | <code>El hombre está alimentando a la serpiente con un ratón.</code> | <code>1.0</code> |
626
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
627
+ ```json
628
+ {
629
+ "scale": 20.0,
630
+ "similarity_fct": "pairwise_cos_sim"
631
+ }
632
+ ```
633
+ </details>
634
+ <details><summary>multi_stsb_fr</summary>
635
+
636
+ #### multi_stsb_fr
637
+
638
+ * Dataset: [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
639
+ * Size: 1,500 evaluation samples
640
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
641
+ * Approximate statistics based on the first 1000 samples:
642
+ | | sentence1 | sentence2 | score |
643
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
644
+ | type | string | string | float |
645
+ | details | <ul><li>min: 6 tokens</li><li>mean: 19.7 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.65 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
646
+ * Samples:
647
+ | sentence1 | sentence2 | score |
648
+ |:-------------------------------------------------------------------------|:----------------------------------------------------------------------------|:-------------------------------|
649
+ | <code>Un homme avec un casque de sécurité est en train de danser.</code> | <code>Un homme portant un casque de sécurité est en train de danser.</code> | <code>1.0</code> |
650
+ | <code>Un jeune enfant monte à cheval.</code> | <code>Un enfant monte à cheval.</code> | <code>0.949999988079071</code> |
651
+ | <code>Un homme donne une souris à un serpent.</code> | <code>L'homme donne une souris au serpent.</code> | <code>1.0</code> |
652
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
653
+ ```json
654
+ {
655
+ "scale": 20.0,
656
+ "similarity_fct": "pairwise_cos_sim"
657
+ }
658
+ ```
659
+ </details>
660
+ <details><summary>multi_stsb_it</summary>
661
+
662
+ #### multi_stsb_it
663
+
664
+ * Dataset: [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
665
+ * Size: 1,500 evaluation samples
666
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
667
+ * Approximate statistics based on the first 1000 samples:
668
+ | | sentence1 | sentence2 | score |
669
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
670
+ | type | string | string | float |
671
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.42 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 18.43 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
672
+ * Samples:
673
+ | sentence1 | sentence2 | score |
674
+ |:------------------------------------------------------------------|:---------------------------------------------------------------|:-------------------------------|
675
+ | <code>Un uomo con l'elmetto sta ballando.</code> | <code>Un uomo che indossa un elmetto sta ballando.</code> | <code>1.0</code> |
676
+ | <code>Un bambino piccolo sta cavalcando un cavallo.</code> | <code>Un bambino sta cavalcando un cavallo.</code> | <code>0.949999988079071</code> |
677
+ | <code>Un uomo sta dando da mangiare un topo a un serpente.</code> | <code>L'uomo sta dando da mangiare un topo al serpente.</code> | <code>1.0</code> |
678
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
679
+ ```json
680
+ {
681
+ "scale": 20.0,
682
+ "similarity_fct": "pairwise_cos_sim"
683
+ }
684
+ ```
685
+ </details>
686
+ <details><summary>multi_stsb_nl</summary>
687
+
688
+ #### multi_stsb_nl
689
+
690
+ * Dataset: [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
691
+ * Size: 1,500 evaluation samples
692
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
693
+ * Approximate statistics based on the first 1000 samples:
694
+ | | sentence1 | sentence2 | score |
695
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
696
+ | type | string | string | float |
697
+ | details | <ul><li>min: 5 tokens</li><li>mean: 17.88 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 17.71 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
698
+ * Samples:
699
+ | sentence1 | sentence2 | score |
700
+ |:-----------------------------------------------------|:-----------------------------------------------------|:-------------------------------|
701
+ | <code>Een man met een helm is aan het dansen.</code> | <code>Een man met een helm is aan het dansen.</code> | <code>1.0</code> |
702
+ | <code>Een jong kind rijdt op een paard.</code> | <code>Een kind rijdt op een paard.</code> | <code>0.949999988079071</code> |
703
+ | <code>Een man voedt een muis aan een slang.</code> | <code>De man voert een muis aan de slang.</code> | <code>1.0</code> |
704
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
705
+ ```json
706
+ {
707
+ "scale": 20.0,
708
+ "similarity_fct": "pairwise_cos_sim"
709
+ }
710
+ ```
711
+ </details>
712
+ <details><summary>multi_stsb_pl</summary>
713
+
714
+ #### multi_stsb_pl
715
+
716
+ * Dataset: [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
717
+ * Size: 1,500 evaluation samples
718
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
719
+ * Approximate statistics based on the first 1000 samples:
720
+ | | sentence1 | sentence2 | score |
721
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
722
+ | type | string | string | float |
723
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.54 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.43 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
724
+ * Samples:
725
+ | sentence1 | sentence2 | score |
726
+ |:---------------------------------------------------|:---------------------------------------------------|:-------------------------------|
727
+ | <code>Tańczy mężczyzna w twardym kapeluszu.</code> | <code>Tańczy mężczyzna w twardym kapeluszu.</code> | <code>1.0</code> |
728
+ | <code>Małe dziecko jedzie na koniu.</code> | <code>Dziecko jedzie na koniu.</code> | <code>0.949999988079071</code> |
729
+ | <code>Człowiek karmi węża myszką.</code> | <code>Ten człowiek karmi węża myszką.</code> | <code>1.0</code> |
730
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
731
+ ```json
732
+ {
733
+ "scale": 20.0,
734
+ "similarity_fct": "pairwise_cos_sim"
735
+ }
736
+ ```
737
+ </details>
738
+ <details><summary>multi_stsb_pt</summary>
739
+
740
+ #### multi_stsb_pt
741
+
742
+ * Dataset: [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
743
+ * Size: 1,500 evaluation samples
744
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
745
+ * Approximate statistics based on the first 1000 samples:
746
+ | | sentence1 | sentence2 | score |
747
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
748
+ | type | string | string | float |
749
+ | details | <ul><li>min: 7 tokens</li><li>mean: 18.22 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 18.11 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
750
+ * Samples:
751
+ | sentence1 | sentence2 | score |
752
+ |:------------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------|
753
+ | <code>Um homem de chapéu duro está a dançar.</code> | <code>Um homem com um capacete está a dançar.</code> | <code>1.0</code> |
754
+ | <code>Uma criança pequena está a montar a cavalo.</code> | <code>Uma criança está a montar a cavalo.</code> | <code>0.949999988079071</code> |
755
+ | <code>Um homem está a alimentar um rato a uma cobra.</code> | <code>O homem está a alimentar a cobra com um rato.</code> | <code>1.0</code> |
756
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
757
+ ```json
758
+ {
759
+ "scale": 20.0,
760
+ "similarity_fct": "pairwise_cos_sim"
761
+ }
762
+ ```
763
+ </details>
764
+ <details><summary>multi_stsb_ru</summary>
765
+
766
+ #### multi_stsb_ru
767
+
768
+ * Dataset: [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
769
+ * Size: 1,500 evaluation samples
770
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
771
+ * Approximate statistics based on the first 1000 samples:
772
+ | | sentence1 | sentence2 | score |
773
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
774
+ | type | string | string | float |
775
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.92 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 17.75 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
776
+ * Samples:
777
+ | sentence1 | sentence2 | score |
778
+ |:------------------------------------------------------|:----------------------------------------------|:-------------------------------|
779
+ | <code>Человек в твердой шляпе танцует.</code> | <code>Мужчина в твердой шляпе танцует.</code> | <code>1.0</code> |
780
+ | <code>Маленький ребенок едет верхом на лошади.</code> | <code>Ребенок едет на лошади.</code> | <code>0.949999988079071</code> |
781
+ | <code>Мужчина кормит мышь змее.</code> | <code>Человек кормит змею мышью.</code> | <code>1.0</code> |
782
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
783
+ ```json
784
+ {
785
+ "scale": 20.0,
786
+ "similarity_fct": "pairwise_cos_sim"
787
+ }
788
+ ```
789
+ </details>
790
+ <details><summary>multi_stsb_zh</summary>
791
+
792
+ #### multi_stsb_zh
793
+
794
+ * Dataset: [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
795
+ * Size: 1,500 evaluation samples
796
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
797
+ * Approximate statistics based on the first 1000 samples:
798
+ | | sentence1 | sentence2 | score |
799
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
800
+ | type | string | string | float |
801
+ | details | <ul><li>min: 6 tokens</li><li>mean: 15.37 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.24 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
802
+ * Samples:
803
+ | sentence1 | sentence2 | score |
804
+ |:---------------------------|:--------------------------|:-------------------------------|
805
+ | <code>一个戴着硬帽子的人在跳舞。</code> | <code>一个戴着硬帽的人在跳舞。</code> | <code>1.0</code> |
806
+ | <code>一个小孩子在骑马。</code> | <code>一个孩子在骑马。</code> | <code>0.949999988079071</code> |
807
+ | <code>一个人正在用老鼠喂蛇。</code> | <code>那人正在给蛇喂老鼠。</code> | <code>1.0</code> |
808
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
809
+ ```json
810
+ {
811
+ "scale": 20.0,
812
+ "similarity_fct": "pairwise_cos_sim"
813
+ }
814
+ ```
815
+ </details>
816
+
817
+ ### Training Hyperparameters
818
+ #### Non-Default Hyperparameters
819
+
820
+ - `eval_strategy`: steps
821
+ - `per_device_train_batch_size`: 16
822
+ - `per_device_eval_batch_size`: 16
823
+ - `num_train_epochs`: 1
824
+ - `warmup_ratio`: 0.1
825
+
826
+ #### All Hyperparameters
827
+ <details><summary>Click to expand</summary>
828
+
829
+ - `overwrite_output_dir`: False
830
+ - `do_predict`: False
831
+ - `eval_strategy`: steps
832
+ - `prediction_loss_only`: True
833
+ - `per_device_train_batch_size`: 16
834
+ - `per_device_eval_batch_size`: 16
835
+ - `per_gpu_train_batch_size`: None
836
+ - `per_gpu_eval_batch_size`: None
837
+ - `gradient_accumulation_steps`: 1
838
+ - `eval_accumulation_steps`: None
839
+ - `torch_empty_cache_steps`: None
840
+ - `learning_rate`: 5e-05
841
+ - `weight_decay`: 0.0
842
+ - `adam_beta1`: 0.9
843
+ - `adam_beta2`: 0.999
844
+ - `adam_epsilon`: 1e-08
845
+ - `max_grad_norm`: 1.0
846
+ - `num_train_epochs`: 1
847
+ - `max_steps`: -1
848
+ - `lr_scheduler_type`: linear
849
+ - `lr_scheduler_kwargs`: {}
850
+ - `warmup_ratio`: 0.1
851
+ - `warmup_steps`: 0
852
+ - `log_level`: passive
853
+ - `log_level_replica`: warning
854
+ - `log_on_each_node`: True
855
+ - `logging_nan_inf_filter`: True
856
+ - `save_safetensors`: True
857
+ - `save_on_each_node`: False
858
+ - `save_only_model`: False
859
+ - `restore_callback_states_from_checkpoint`: False
860
+ - `no_cuda`: False
861
+ - `use_cpu`: False
862
+ - `use_mps_device`: False
863
+ - `seed`: 42
864
+ - `data_seed`: None
865
+ - `jit_mode_eval`: False
866
+ - `use_ipex`: False
867
+ - `bf16`: False
868
+ - `fp16`: False
869
+ - `fp16_opt_level`: O1
870
+ - `half_precision_backend`: auto
871
+ - `bf16_full_eval`: False
872
+ - `fp16_full_eval`: False
873
+ - `tf32`: None
874
+ - `local_rank`: 0
875
+ - `ddp_backend`: None
876
+ - `tpu_num_cores`: None
877
+ - `tpu_metrics_debug`: False
878
+ - `debug`: []
879
+ - `dataloader_drop_last`: False
880
+ - `dataloader_num_workers`: 0
881
+ - `dataloader_prefetch_factor`: None
882
+ - `past_index`: -1
883
+ - `disable_tqdm`: False
884
+ - `remove_unused_columns`: True
885
+ - `label_names`: None
886
+ - `load_best_model_at_end`: False
887
+ - `ignore_data_skip`: False
888
+ - `fsdp`: []
889
+ - `fsdp_min_num_params`: 0
890
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
891
+ - `fsdp_transformer_layer_cls_to_wrap`: None
892
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
893
+ - `deepspeed`: None
894
+ - `label_smoothing_factor`: 0.0
895
+ - `optim`: adamw_torch
896
+ - `optim_args`: None
897
+ - `adafactor`: False
898
+ - `group_by_length`: False
899
+ - `length_column_name`: length
900
+ - `ddp_find_unused_parameters`: None
901
+ - `ddp_bucket_cap_mb`: None
902
+ - `ddp_broadcast_buffers`: False
903
+ - `dataloader_pin_memory`: True
904
+ - `dataloader_persistent_workers`: False
905
+ - `skip_memory_metrics`: True
906
+ - `use_legacy_prediction_loop`: False
907
+ - `push_to_hub`: False
908
+ - `resume_from_checkpoint`: None
909
+ - `hub_model_id`: None
910
+ - `hub_strategy`: every_save
911
+ - `hub_private_repo`: None
912
+ - `hub_always_push`: False
913
+ - `gradient_checkpointing`: False
914
+ - `gradient_checkpointing_kwargs`: None
915
+ - `include_inputs_for_metrics`: False
916
+ - `include_for_metrics`: []
917
+ - `eval_do_concat_batches`: True
918
+ - `fp16_backend`: auto
919
+ - `push_to_hub_model_id`: None
920
+ - `push_to_hub_organization`: None
921
+ - `mp_parameters`:
922
+ - `auto_find_batch_size`: False
923
+ - `full_determinism`: False
924
+ - `torchdynamo`: None
925
+ - `ray_scope`: last
926
+ - `ddp_timeout`: 1800
927
+ - `torch_compile`: False
928
+ - `torch_compile_backend`: None
929
+ - `torch_compile_mode`: None
930
+ - `dispatch_batches`: None
931
+ - `split_batches`: None
932
+ - `include_tokens_per_second`: False
933
+ - `include_num_input_tokens_seen`: False
934
+ - `neftune_noise_alpha`: None
935
+ - `optim_target_modules`: None
936
+ - `batch_eval_metrics`: False
937
+ - `eval_on_start`: False
938
+ - `use_liger_kernel`: False
939
+ - `eval_use_gather_object`: False
940
+ - `average_tokens_across_devices`: False
941
+ - `prompts`: None
942
+ - `batch_sampler`: batch_sampler
943
+ - `multi_dataset_batch_sampler`: proportional
944
+
945
+ </details>
946
+
947
+ ### Training Logs
948
+ | Epoch | Step | sts-test_spearman_cosine |
949
+ |:-----:|:----:|:------------------------:|
950
+ | -1 | -1 | 0.7837 |
951
+
952
+
953
+ ### Framework Versions
954
+ - Python: 3.10.13
955
+ - Sentence Transformers: 3.4.1
956
+ - Transformers: 4.48.2
957
+ - PyTorch: 2.1.2+cu121
958
+ - Accelerate: 1.3.0
959
+ - Datasets: 2.16.1
960
+ - Tokenizers: 0.21.0
961
+
962
+ ## Citation
963
+
964
+ ### BibTeX
965
+
966
+ #### Sentence Transformers
967
+ ```bibtex
968
+ @inproceedings{reimers-2019-sentence-bert,
969
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
970
+ author = "Reimers, Nils and Gurevych, Iryna",
971
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
972
+ month = "11",
973
+ year = "2019",
974
+ publisher = "Association for Computational Linguistics",
975
+ url = "https://arxiv.org/abs/1908.10084",
976
+ }
977
+ ```
978
+
979
+ #### CoSENTLoss
980
+ ```bibtex
981
+ @online{kexuefm-8847,
982
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
983
+ author={Su Jianlin},
984
+ year={2022},
985
+ month={Jan},
986
+ url={https://kexue.fm/archives/8847},
987
+ }
988
+ ```
989
+
990
+ <!--
991
+ ## Glossary
992
+
993
+ *Clearly define terms in order to be accessible across audiences.*
994
+ -->
995
+
996
+ <!--
997
+ ## Model Card Authors
998
+
999
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1000
+ -->
1001
+
1002
+ <!--
1003
+ ## Model Card Contact
1004
+
1005
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1006
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.48.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:341d02abfe922f21cc14695e4dff7f314652f984845d00a61f196df6412cda62
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_MultiHeadGeneralizedPooling",
12
+ "type": "sentence_generalized_pooling.multihead_generalized_pooling.MultiHeadGeneralizedPooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }