---
language:
- de
- en
- es
- fr
- it
- nl
- pl
- pt
- ru
- zh
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:51741
- loss:CoSENTLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
- source_sentence: Starsza para azjatycka pozuje z noworodkiem przy stole obiadowym.
sentences:
- Koszykarz ma zamiar zdobyć punkty dla swojej drużyny.
- Grupa starszych osób pozuje wokół stołu w jadalni.
- Możliwe, że układ słoneczny taki jak nasz może istnieć poza galaktyką.
- source_sentence: Englisch arbeitet überall mit Menschen, die Dinge kaufen und verkaufen,
und in der Gastfreundschaft und im Tourismusgeschäft.
sentences:
- Ich bin in Maharashtra (einschließlich Mumbai) und Andhra Pradesh herumgereist,
und ich hatte kein Problem damit, nur mit Englisch auszukommen.
- 'Ein griechischsprachiger Sklave (δούλος, doulos) würde seinen Herrn, glaube ich,
κύριος nennen (translit: kurios; Herr, Herr, Herr, Herr; Vokativform: κύριε).'
- Das Paar lag auf dem Bett.
- source_sentence: Si vous vous comprenez et comprenez votre ennemi, vous aurez beaucoup
plus de chances de gagner n'importe quelle bataille.
sentences:
- 'Outre les probabilités de gagner une bataille théorique, cette citation a une
autre signification : l''importance de connaître/comprendre les autres.'
- Une femme et un chien se promènent ensemble.
- Un homme joue de la guitare.
- source_sentence: Un homme joue de la harpe.
sentences:
- Une femme joue de la guitare.
- une femme a un enfant.
- Un groupe de personnes est debout et assis sur le sol la nuit.
- source_sentence: Dois cães a lutar na neve.
sentences:
- Dois cães brincam na neve.
- Pode sempre perguntar, então é a escolha do autor a aceitar ou não.
- Um gato está a caminhar sobre chão de madeira dura.
datasets:
- PhilipMay/stsb_multi_mt
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.7692321507082782
name: Pearson Cosine
- type: spearman_cosine
value: 0.7754664383435602
name: Spearman Cosine
- type: pearson_cosine
value: 0.744008191409292
name: Pearson Cosine
- type: spearman_cosine
value: 0.7432706720166963
name: Spearman Cosine
- type: pearson_cosine
value: 0.7776852512001898
name: Pearson Cosine
- type: spearman_cosine
value: 0.76766489827043
name: Spearman Cosine
- type: pearson_cosine
value: 0.8314297687820957
name: Pearson Cosine
- type: spearman_cosine
value: 0.8277691429963476
name: Spearman Cosine
- type: pearson_cosine
value: 0.6929213209527071
name: Pearson Cosine
- type: spearman_cosine
value: 0.7054612855633249
name: Spearman Cosine
- type: pearson_cosine
value: 0.7918682837845359
name: Pearson Cosine
- type: spearman_cosine
value: 0.7976160149852088
name: Spearman Cosine
- type: pearson_cosine
value: 0.8513155698871028
name: Pearson Cosine
- type: spearman_cosine
value: 0.8484524209199422
name: Spearman Cosine
- type: pearson_cosine
value: 0.7935251833509375
name: Pearson Cosine
- type: spearman_cosine
value: 0.7822969529870586
name: Spearman Cosine
- type: pearson_cosine
value: 0.7881663420573638
name: Pearson Cosine
- type: spearman_cosine
value: 0.7773593792885142
name: Spearman Cosine
- type: pearson_cosine
value: 0.7890643648864227
name: Pearson Cosine
- type: spearman_cosine
value: 0.7837157606570725
name: Spearman Cosine
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) and [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- **Languages:** de, en, es, fr, it, nl, pl, pt, ru, zh
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): MultiHeadGeneralizedPooling()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("RomainDarous/large_directOneEpoch_maxPooling_stsModel")
# Run inference
sentences = [
'Dois cães a lutar na neve.',
'Dois cães brincam na neve.',
'Pode sempre perguntar, então é a escolha do autor a aceitar ou não.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7692 |
| **spearman_cosine** | **0.7755** |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.744 |
| **spearman_cosine** | **0.7433** |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7777 |
| **spearman_cosine** | **0.7677** |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8314 |
| **spearman_cosine** | **0.8278** |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6929 |
| **spearman_cosine** | **0.7055** |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7919 |
| **spearman_cosine** | **0.7976** |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8513 |
| **spearman_cosine** | **0.8485** |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7935 |
| **spearman_cosine** | **0.7823** |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7882 |
| **spearman_cosine** | **0.7774** |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7891 |
| **spearman_cosine** | **0.7837** |
## Training Details
### Training Datasets
multi_stsb_de
#### multi_stsb_de
* Dataset: [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 5 tokens
- mean: 11.58 tokens
- max: 37 tokens
| - min: 6 tokens
- mean: 11.53 tokens
- max: 36 tokens
| - min: 0.0
- mean: 0.45
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:---------------------------------------------------------------|:--------------------------------------------------------------------------|:--------------------------------|
| Ein Flugzeug hebt gerade ab.
| Ein Flugzeug hebt gerade ab.
| 1.0
|
| Ein Mann spielt eine große Flöte.
| Ein Mann spielt eine Flöte.
| 0.7599999904632568
|
| Ein Mann streicht geriebenen Käse auf eine Pizza.
| Ein Mann streicht geriebenen Käse auf eine ungekochte Pizza.
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
multi_stsb_es
#### multi_stsb_es
* Dataset: [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 7 tokens
- mean: 12.21 tokens
- max: 33 tokens
| - min: 7 tokens
- mean: 12.07 tokens
- max: 31 tokens
| - min: 0.0
- mean: 0.45
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:----------------------------------------------------------------|:----------------------------------------------------------------------|:--------------------------------|
| Un avión está despegando.
| Un avión está despegando.
| 1.0
|
| Un hombre está tocando una gran flauta.
| Un hombre está tocando una flauta.
| 0.7599999904632568
|
| Un hombre está untando queso rallado en una pizza.
| Un hombre está untando queso rallado en una pizza cruda.
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
multi_stsb_fr
#### multi_stsb_fr
* Dataset: [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 6 tokens
- mean: 12.6 tokens
- max: 33 tokens
| - min: 6 tokens
- mean: 12.49 tokens
- max: 32 tokens
| - min: 0.0
- mean: 0.45
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:-----------------------------------------------------------|:---------------------------------------------------------------------|:--------------------------------|
| Un avion est en train de décoller.
| Un avion est en train de décoller.
| 1.0
|
| Un homme joue d'une grande flûte.
| Un homme joue de la flûte.
| 0.7599999904632568
|
| Un homme étale du fromage râpé sur une pizza.
| Un homme étale du fromage râpé sur une pizza non cuite.
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
multi_stsb_it
#### multi_stsb_it
* Dataset: [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 7 tokens
- mean: 12.77 tokens
- max: 36 tokens
| - min: 8 tokens
- mean: 12.69 tokens
- max: 30 tokens
| - min: 0.0
- mean: 0.45
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:--------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------|
| Un aereo sta decollando.
| Un aereo sta decollando.
| 1.0
|
| Un uomo sta suonando un grande flauto.
| Un uomo sta suonando un flauto.
| 0.7599999904632568
|
| Un uomo sta spalmando del formaggio a pezzetti su una pizza.
| Un uomo sta spalmando del formaggio a pezzetti su una pizza non cotta.
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
multi_stsb_nl
#### multi_stsb_nl
* Dataset: [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 6 tokens
- mean: 11.67 tokens
- max: 33 tokens
| - min: 6 tokens
- mean: 11.55 tokens
- max: 29 tokens
| - min: 0.0
- mean: 0.45
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:--------------------------------------------------------|:--------------------------------------------------------------------|:--------------------------------|
| Er gaat een vliegtuig opstijgen.
| Er gaat een vliegtuig opstijgen.
| 1.0
|
| Een man speelt een grote fluit.
| Een man speelt fluit.
| 0.7599999904632568
|
| Een man smeert geraspte kaas op een pizza.
| Een man strooit geraspte kaas op een ongekookte pizza.
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
multi_stsb_pl
#### multi_stsb_pl
* Dataset: [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 5 tokens
- mean: 12.2 tokens
- max: 39 tokens
| - min: 5 tokens
- mean: 12.11 tokens
- max: 35 tokens
| - min: 0.0
- mean: 0.45
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:-----------------------------------------------------------|:------------------------------------------------------------------------|:--------------------------------|
| Samolot wystartował.
| Samolot wystartował.
| 1.0
|
| Człowiek gra na dużym flecie.
| Człowiek gra na flecie.
| 0.7599999904632568
|
| Mężczyzna rozsiewa na pizzy rozdrobniony ser.
| Mężczyzna rozsiewa rozdrobniony ser na niegotowanej pizzy.
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
multi_stsb_pt
#### multi_stsb_pt
* Dataset: [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 7 tokens
- mean: 12.33 tokens
- max: 34 tokens
| - min: 7 tokens
- mean: 12.29 tokens
- max: 32 tokens
| - min: 0.0
- mean: 0.45
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------|
| Um avião está a descolar.
| Um avião aéreo está a descolar.
| 1.0
|
| Um homem está a tocar uma grande flauta.
| Um homem está a tocar uma flauta.
| 0.7599999904632568
|
| Um homem está a espalhar queijo desfiado numa pizza.
| Um homem está a espalhar queijo desfiado sobre uma pizza não cozida.
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
multi_stsb_ru
#### multi_stsb_ru
* Dataset: [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 5 tokens
- mean: 11.19 tokens
- max: 39 tokens
| - min: 5 tokens
- mean: 11.17 tokens
- max: 26 tokens
| - min: 0.0
- mean: 0.45
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:------------------------------------------------|:---------------------------------------------------------------------|:--------------------------------|
| Самолет взлетает.
| Взлетает самолет.
| 1.0
|
| Человек играет на большой флейте.
| Человек играет на флейте.
| 0.7599999904632568
|
| Мужчина разбрасывает сыр на пиццу.
| Мужчина разбрасывает измельченный сыр на вареную пиццу.
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
multi_stsb_zh
#### multi_stsb_zh
* Dataset: [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 6 tokens
- mean: 10.7 tokens
- max: 32 tokens
| - min: 7 tokens
- mean: 10.79 tokens
- max: 26 tokens
| - min: 0.0
- mean: 0.45
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:------------------------------|:----------------------------------|:--------------------------------|
| 一架飞机正在起飞。
| 一架飞机正在起飞。
| 1.0
|
| 一个男人正在吹一支大笛子。
| 一个人在吹笛子。
| 0.7599999904632568
|
| 一名男子正在比萨饼上涂抹奶酪丝。
| 一名男子正在将奶酪丝涂抹在未熟的披萨上。
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Datasets
multi_stsb_de
#### multi_stsb_de
* Dataset: [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 5 tokens
- mean: 18.25 tokens
- max: 47 tokens
| - min: 6 tokens
- mean: 18.25 tokens
- max: 54 tokens
| - min: 0.0
- mean: 0.42
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:-------------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------|
| Ein Mann mit einem Schutzhelm tanzt.
| Ein Mann mit einem Schutzhelm tanzt.
| 1.0
|
| Ein kleines Kind reitet auf einem Pferd.
| Ein Kind reitet auf einem Pferd.
| 0.949999988079071
|
| Ein Mann verfüttert eine Maus an eine Schlange.
| Der Mann füttert die Schlange mit einer Maus.
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
multi_stsb_es
#### multi_stsb_es
* Dataset: [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 7 tokens
- mean: 17.98 tokens
- max: 47 tokens
| - min: 7 tokens
- mean: 17.86 tokens
- max: 47 tokens
| - min: 0.0
- mean: 0.42
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:----------------------------------------------------------------------|:---------------------------------------------------------------------|:-------------------------------|
| Un hombre con un casco está bailando.
| Un hombre con un casco está bailando.
| 1.0
|
| Un niño pequeño está montando a caballo.
| Un niño está montando a caballo.
| 0.949999988079071
|
| Un hombre está alimentando a una serpiente con un ratón.
| El hombre está alimentando a la serpiente con un ratón.
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
multi_stsb_fr
#### multi_stsb_fr
* Dataset: [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 6 tokens
- mean: 19.7 tokens
- max: 49 tokens
| - min: 6 tokens
- mean: 19.65 tokens
- max: 51 tokens
| - min: 0.0
- mean: 0.42
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:-------------------------------------------------------------------------|:----------------------------------------------------------------------------|:-------------------------------|
| Un homme avec un casque de sécurité est en train de danser.
| Un homme portant un casque de sécurité est en train de danser.
| 1.0
|
| Un jeune enfant monte à cheval.
| Un enfant monte à cheval.
| 0.949999988079071
|
| Un homme donne une souris à un serpent.
| L'homme donne une souris au serpent.
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
multi_stsb_it
#### multi_stsb_it
* Dataset: [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 6 tokens
- mean: 18.42 tokens
- max: 46 tokens
| - min: 8 tokens
- mean: 18.43 tokens
- max: 53 tokens
| - min: 0.0
- mean: 0.42
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:------------------------------------------------------------------|:---------------------------------------------------------------|:-------------------------------|
| Un uomo con l'elmetto sta ballando.
| Un uomo che indossa un elmetto sta ballando.
| 1.0
|
| Un bambino piccolo sta cavalcando un cavallo.
| Un bambino sta cavalcando un cavallo.
| 0.949999988079071
|
| Un uomo sta dando da mangiare un topo a un serpente.
| L'uomo sta dando da mangiare un topo al serpente.
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
multi_stsb_nl
#### multi_stsb_nl
* Dataset: [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 5 tokens
- mean: 17.88 tokens
- max: 50 tokens
| - min: 6 tokens
- mean: 17.71 tokens
- max: 51 tokens
| - min: 0.0
- mean: 0.42
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:-----------------------------------------------------|:-----------------------------------------------------|:-------------------------------|
| Een man met een helm is aan het dansen.
| Een man met een helm is aan het dansen.
| 1.0
|
| Een jong kind rijdt op een paard.
| Een kind rijdt op een paard.
| 0.949999988079071
|
| Een man voedt een muis aan een slang.
| De man voert een muis aan de slang.
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
multi_stsb_pl
#### multi_stsb_pl
* Dataset: [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 6 tokens
- mean: 18.54 tokens
- max: 46 tokens
| - min: 6 tokens
- mean: 18.43 tokens
- max: 54 tokens
| - min: 0.0
- mean: 0.42
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:---------------------------------------------------|:---------------------------------------------------|:-------------------------------|
| Tańczy mężczyzna w twardym kapeluszu.
| Tańczy mężczyzna w twardym kapeluszu.
| 1.0
|
| Małe dziecko jedzie na koniu.
| Dziecko jedzie na koniu.
| 0.949999988079071
|
| Człowiek karmi węża myszką.
| Ten człowiek karmi węża myszką.
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
multi_stsb_pt
#### multi_stsb_pt
* Dataset: [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 7 tokens
- mean: 18.22 tokens
- max: 46 tokens
| - min: 7 tokens
- mean: 18.11 tokens
- max: 46 tokens
| - min: 0.0
- mean: 0.42
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:------------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------|
| Um homem de chapéu duro está a dançar.
| Um homem com um capacete está a dançar.
| 1.0
|
| Uma criança pequena está a montar a cavalo.
| Uma criança está a montar a cavalo.
| 0.949999988079071
|
| Um homem está a alimentar um rato a uma cobra.
| O homem está a alimentar a cobra com um rato.
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
multi_stsb_ru
#### multi_stsb_ru
* Dataset: [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 6 tokens
- mean: 17.92 tokens
- max: 49 tokens
| - min: 5 tokens
- mean: 17.75 tokens
- max: 47 tokens
| - min: 0.0
- mean: 0.42
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:------------------------------------------------------|:----------------------------------------------|:-------------------------------|
| Человек в твердой шляпе танцует.
| Мужчина в твердой шляпе танцует.
| 1.0
|
| Маленький ребенок едет верхом на лошади.
| Ребенок едет на лошади.
| 0.949999988079071
|
| Мужчина кормит мышь змее.
| Человек кормит змею мышью.
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
multi_stsb_zh
#### multi_stsb_zh
* Dataset: [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | - min: 6 tokens
- mean: 15.37 tokens
- max: 46 tokens
| - min: 5 tokens
- mean: 15.24 tokens
- max: 46 tokens
| - min: 0.0
- mean: 0.42
- max: 1.0
|
* Samples:
| sentence1 | sentence2 | score |
|:---------------------------|:--------------------------|:-------------------------------|
| 一个戴着硬帽子的人在跳舞。
| 一个戴着硬帽的人在跳舞。
| 1.0
|
| 一个小孩子在骑马。
| 一个孩子在骑马。
| 0.949999988079071
|
| 一个人正在用老鼠喂蛇。
| 那人正在给蛇喂老鼠。
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
#### All Hyperparameters
Click to expand
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
### Training Logs
| Epoch | Step | sts-test_spearman_cosine |
|:-----:|:----:|:------------------------:|
| -1 | -1 | 0.7837 |
### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.3.0
- Datasets: 2.16.1
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
```