---
language:
- de
- en
- es
- fr
- it
- nl
- pl
- pt
- ru
- zh
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:51741
- loss:CoSENTLoss
base_model: RomainDarous/pre_training_original_model
widget:
- source_sentence: Starsza para azjatycka pozuje z noworodkiem przy stole obiadowym.
sentences:
- Koszykarz ma zamiar zdobyć punkty dla swojej drużyny.
- Grupa starszych osób pozuje wokół stołu w jadalni.
- Możliwe, że układ słoneczny taki jak nasz może istnieć poza galaktyką.
- source_sentence: Englisch arbeitet überall mit Menschen, die Dinge kaufen und verkaufen,
und in der Gastfreundschaft und im Tourismusgeschäft.
sentences:
- Ich bin in Maharashtra (einschließlich Mumbai) und Andhra Pradesh herumgereist,
und ich hatte kein Problem damit, nur mit Englisch auszukommen.
- 'Ein griechischsprachiger Sklave (δούλος, doulos) würde seinen Herrn, glaube ich,
κύριος nennen (translit: kurios; Herr, Herr, Herr, Herr; Vokativform: κύριε).'
- Das Paar lag auf dem Bett.
- source_sentence: Si vous vous comprenez et comprenez votre ennemi, vous aurez beaucoup
plus de chances de gagner n'importe quelle bataille.
sentences:
- 'Outre les probabilités de gagner une bataille théorique, cette citation a une
autre signification : l''importance de connaître/comprendre les autres.'
- Une femme et un chien se promènent ensemble.
- Un homme joue de la guitare.
- source_sentence: Un homme joue de la harpe.
sentences:
- Une femme joue de la guitare.
- une femme a un enfant.
- Un groupe de personnes est debout et assis sur le sol la nuit.
- source_sentence: Dois cães a lutar na neve.
sentences:
- Dois cães brincam na neve.
- Pode sempre perguntar, então é a escolha do autor a aceitar ou não.
- Um gato está a caminhar sobre chão de madeira dura.
datasets:
- PhilipMay/stsb_multi_mt
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on RomainDarous/pre_training_original_model
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts eval
type: sts-eval
metrics:
- type: pearson_cosine
value: 0.649351613026743
name: Pearson Cosine
- type: spearman_cosine
value: 0.6712113629733555
name: Spearman Cosine
- type: pearson_cosine
value: 0.6648874938903813
name: Pearson Cosine
- type: spearman_cosine
value: 0.6859979455545288
name: Spearman Cosine
- type: pearson_cosine
value: 0.6574990404767099
name: Pearson Cosine
- type: spearman_cosine
value: 0.6819347305734045
name: Spearman Cosine
- type: pearson_cosine
value: 0.6482851200513846
name: Pearson Cosine
- type: spearman_cosine
value: 0.6739057551228634
name: Spearman Cosine
- type: pearson_cosine
value: 0.657747388798702
name: Pearson Cosine
- type: spearman_cosine
value: 0.6797522820481435
name: Spearman Cosine
- type: pearson_cosine
value: 0.580138787555855
name: Pearson Cosine
- type: spearman_cosine
value: 0.6025843591291092
name: Spearman Cosine
- type: pearson_cosine
value: 0.6445711160678915
name: Pearson Cosine
- type: spearman_cosine
value: 0.6738244742184887
name: Spearman Cosine
- type: pearson_cosine
value: 0.6060638359389463
name: Pearson Cosine
- type: spearman_cosine
value: 0.6210827296807453
name: Spearman Cosine
- type: pearson_cosine
value: 0.6672294139281439
name: Pearson Cosine
- type: spearman_cosine
value: 0.6864882079409924
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.6279093972489541
name: Pearson Cosine
- type: spearman_cosine
value: 0.6320355986028895
name: Spearman Cosine
- type: pearson_cosine
value: 0.6433522116833627
name: Pearson Cosine
- type: spearman_cosine
value: 0.658000076471118
name: Spearman Cosine
- type: pearson_cosine
value: 0.6271929274305698
name: Pearson Cosine
- type: spearman_cosine
value: 0.6229896619978917
name: Spearman Cosine
- type: pearson_cosine
value: 0.6391062028706688
name: Pearson Cosine
- type: spearman_cosine
value: 0.6417698712729121
name: Spearman Cosine
- type: pearson_cosine
value: 0.622947898324511
name: Pearson Cosine
- type: spearman_cosine
value: 0.6179788172853071
name: Spearman Cosine
- type: pearson_cosine
value: 0.5903164175964553
name: Pearson Cosine
- type: spearman_cosine
value: 0.5887507390354803
name: Spearman Cosine
- type: pearson_cosine
value: 0.640080846863563
name: Pearson Cosine
- type: spearman_cosine
value: 0.6391082728350455
name: Spearman Cosine
- type: pearson_cosine
value: 0.6172821161239198
name: Pearson Cosine
- type: spearman_cosine
value: 0.6180296923884917
name: Spearman Cosine
- type: pearson_cosine
value: 0.6607896399210559
name: Pearson Cosine
- type: spearman_cosine
value: 0.6616750284666137
name: Spearman Cosine
---
# SentenceTransformer based on RomainDarous/pre_training_original_model
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [RomainDarous/pre_training_original_model](https://huggingface.co/RomainDarous/pre_training_original_model) on the [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) and [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) datasets. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [RomainDarous/pre_training_original_model](https://huggingface.co/RomainDarous/pre_training_original_model)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 512 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- **Languages:** de, en, es, fr, it, nl, pl, pt, ru, zh
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("RomainDarous/multists_finetuned_original_model")
# Run inference
sentences = [
'Dois cães a lutar na neve.',
'Dois cães brincam na neve.',
'Pode sempre perguntar, então é a escolha do autor a aceitar ou não.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `sts-eval`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test` and `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | sts-eval | sts-test |
|:--------------------|:-----------|:-----------|
| pearson_cosine | 0.6494 | 0.6608 |
| **spearman_cosine** | **0.6712** | **0.6617** |
#### Semantic Similarity
* Dataset: `sts-eval`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.6649 |
| **spearman_cosine** | **0.686** |
#### Semantic Similarity
* Dataset: `sts-eval`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6575 |
| **spearman_cosine** | **0.6819** |
#### Semantic Similarity
* Dataset: `sts-eval`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6483 |
| **spearman_cosine** | **0.6739** |
#### Semantic Similarity
* Dataset: `sts-eval`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6577 |
| **spearman_cosine** | **0.6798** |
#### Semantic Similarity
* Dataset: `sts-eval`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.5801 |
| **spearman_cosine** | **0.6026** |
#### Semantic Similarity
* Dataset: `sts-eval`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6446 |
| **spearman_cosine** | **0.6738** |
#### Semantic Similarity
* Dataset: `sts-eval`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6061 |
| **spearman_cosine** | **0.6211** |
#### Semantic Similarity
* Dataset: `sts-eval`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6672 |
| **spearman_cosine** | **0.6865** |
## Training Details
### Training Datasets
#### multi_stsb_de
* Dataset: [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
Ein Flugzeug hebt gerade ab.
| Ein Flugzeug hebt gerade ab.
| 1.0
|
| Ein Mann spielt eine große Flöte.
| Ein Mann spielt eine Flöte.
| 0.7599999904632568
|
| Ein Mann streicht geriebenen Käse auf eine Pizza.
| Ein Mann streicht geriebenen Käse auf eine ungekochte Pizza.
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### multi_stsb_es
* Dataset: [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Un avión está despegando.
| Un avión está despegando.
| 1.0
|
| Un hombre está tocando una gran flauta.
| Un hombre está tocando una flauta.
| 0.7599999904632568
|
| Un hombre está untando queso rallado en una pizza.
| Un hombre está untando queso rallado en una pizza cruda.
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### multi_stsb_fr
* Dataset: [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Un avion est en train de décoller.
| Un avion est en train de décoller.
| 1.0
|
| Un homme joue d'une grande flûte.
| Un homme joue de la flûte.
| 0.7599999904632568
|
| Un homme étale du fromage râpé sur une pizza.
| Un homme étale du fromage râpé sur une pizza non cuite.
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### multi_stsb_it
* Dataset: [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Un aereo sta decollando.
| Un aereo sta decollando.
| 1.0
|
| Un uomo sta suonando un grande flauto.
| Un uomo sta suonando un flauto.
| 0.7599999904632568
|
| Un uomo sta spalmando del formaggio a pezzetti su una pizza.
| Un uomo sta spalmando del formaggio a pezzetti su una pizza non cotta.
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### multi_stsb_nl
* Dataset: [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Er gaat een vliegtuig opstijgen.
| Er gaat een vliegtuig opstijgen.
| 1.0
|
| Een man speelt een grote fluit.
| Een man speelt fluit.
| 0.7599999904632568
|
| Een man smeert geraspte kaas op een pizza.
| Een man strooit geraspte kaas op een ongekookte pizza.
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### multi_stsb_pl
* Dataset: [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Samolot wystartował.
| Samolot wystartował.
| 1.0
|
| Człowiek gra na dużym flecie.
| Człowiek gra na flecie.
| 0.7599999904632568
|
| Mężczyzna rozsiewa na pizzy rozdrobniony ser.
| Mężczyzna rozsiewa rozdrobniony ser na niegotowanej pizzy.
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### multi_stsb_pt
* Dataset: [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Um avião está a descolar.
| Um avião aéreo está a descolar.
| 1.0
|
| Um homem está a tocar uma grande flauta.
| Um homem está a tocar uma flauta.
| 0.7599999904632568
|
| Um homem está a espalhar queijo desfiado numa pizza.
| Um homem está a espalhar queijo desfiado sobre uma pizza não cozida.
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### multi_stsb_ru
* Dataset: [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Самолет взлетает.
| Взлетает самолет.
| 1.0
|
| Человек играет на большой флейте.
| Человек играет на флейте.
| 0.7599999904632568
|
| Мужчина разбрасывает сыр на пиццу.
| Мужчина разбрасывает измельченный сыр на вареную пиццу.
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### multi_stsb_zh
* Dataset: [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | 一架飞机正在起飞。
| 一架飞机正在起飞。
| 1.0
|
| 一个男人正在吹一支大笛子。
| 一个人在吹笛子。
| 0.7599999904632568
|
| 一名男子正在比萨饼上涂抹奶酪丝。
| 一名男子正在将奶酪丝涂抹在未熟的披萨上。
| 0.7599999904632568
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Datasets
#### multi_stsb_de
* Dataset: [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Ein Mann mit einem Schutzhelm tanzt.
| Ein Mann mit einem Schutzhelm tanzt.
| 1.0
|
| Ein kleines Kind reitet auf einem Pferd.
| Ein Kind reitet auf einem Pferd.
| 0.949999988079071
|
| Ein Mann verfüttert eine Maus an eine Schlange.
| Der Mann füttert die Schlange mit einer Maus.
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### multi_stsb_es
* Dataset: [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Un hombre con un casco está bailando.
| Un hombre con un casco está bailando.
| 1.0
|
| Un niño pequeño está montando a caballo.
| Un niño está montando a caballo.
| 0.949999988079071
|
| Un hombre está alimentando a una serpiente con un ratón.
| El hombre está alimentando a la serpiente con un ratón.
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### multi_stsb_fr
* Dataset: [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Un homme avec un casque de sécurité est en train de danser.
| Un homme portant un casque de sécurité est en train de danser.
| 1.0
|
| Un jeune enfant monte à cheval.
| Un enfant monte à cheval.
| 0.949999988079071
|
| Un homme donne une souris à un serpent.
| L'homme donne une souris au serpent.
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### multi_stsb_it
* Dataset: [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Un uomo con l'elmetto sta ballando.
| Un uomo che indossa un elmetto sta ballando.
| 1.0
|
| Un bambino piccolo sta cavalcando un cavallo.
| Un bambino sta cavalcando un cavallo.
| 0.949999988079071
|
| Un uomo sta dando da mangiare un topo a un serpente.
| L'uomo sta dando da mangiare un topo al serpente.
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### multi_stsb_nl
* Dataset: [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Een man met een helm is aan het dansen.
| Een man met een helm is aan het dansen.
| 1.0
|
| Een jong kind rijdt op een paard.
| Een kind rijdt op een paard.
| 0.949999988079071
|
| Een man voedt een muis aan een slang.
| De man voert een muis aan de slang.
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### multi_stsb_pl
* Dataset: [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Tańczy mężczyzna w twardym kapeluszu.
| Tańczy mężczyzna w twardym kapeluszu.
| 1.0
|
| Małe dziecko jedzie na koniu.
| Dziecko jedzie na koniu.
| 0.949999988079071
|
| Człowiek karmi węża myszką.
| Ten człowiek karmi węża myszką.
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### multi_stsb_pt
* Dataset: [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Um homem de chapéu duro está a dançar.
| Um homem com um capacete está a dançar.
| 1.0
|
| Uma criança pequena está a montar a cavalo.
| Uma criança está a montar a cavalo.
| 0.949999988079071
|
| Um homem está a alimentar um rato a uma cobra.
| O homem está a alimentar a cobra com um rato.
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### multi_stsb_ru
* Dataset: [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Человек в твердой шляпе танцует.
| Мужчина в твердой шляпе танцует.
| 1.0
|
| Маленький ребенок едет верхом на лошади.
| Ребенок едет на лошади.
| 0.949999988079071
|
| Мужчина кормит мышь змее.
| Человек кормит змею мышью.
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### multi_stsb_zh
* Dataset: [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | 一个戴着硬帽子的人在跳舞。
| 一个戴着硬帽的人在跳舞。
| 1.0
|
| 一个小孩子在骑马。
| 一个孩子在骑马。
| 0.949999988079071
|
| 一个人正在用老鼠喂蛇。
| 那人正在给蛇喂老鼠。
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
#### All Hyperparameters