Upload 11 files
Browse files- config.json +37 -0
- generation_config.json +11 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- pytorch_model.bin +3 -0
- setup.py +52 -0
- special_tokens_map.json +51 -0
- tessar_tokenizer.py +164 -0
- tessar_tokenizer_example.py +38 -0
- tokenizer_config.json +67 -0
- vocab.json +0 -0
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "SVECTOR-CORPORATION/Tessar-largest",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"architectures": [
|
6 |
+
"BartForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"bos_token_id": 0,
|
10 |
+
"classifier_dropout": 0.0,
|
11 |
+
"d_model": 1024,
|
12 |
+
"decoder_attention_heads": 16,
|
13 |
+
"decoder_ffn_dim": 4096,
|
14 |
+
"decoder_layerdrop": 0.0,
|
15 |
+
"decoder_layers": 12,
|
16 |
+
"decoder_start_token_id": 2,
|
17 |
+
"dropout": 0.1,
|
18 |
+
"encoder_attention_heads": 16,
|
19 |
+
"encoder_ffn_dim": 4096,
|
20 |
+
"encoder_layerdrop": 0.0,
|
21 |
+
"encoder_layers": 12,
|
22 |
+
"eos_token_id": 2,
|
23 |
+
"forced_bos_token_id": 0,
|
24 |
+
"forced_eos_token_id": 2,
|
25 |
+
"init_std": 0.02,
|
26 |
+
"is_encoder_decoder": true,
|
27 |
+
"max_length": 1024,
|
28 |
+
"max_position_embeddings": 1024,
|
29 |
+
"model_type": "bart",
|
30 |
+
"num_hidden_layers": 12,
|
31 |
+
"pad_token_id": 1,
|
32 |
+
"scale_embedding": false,
|
33 |
+
"torch_dtype": "float32",
|
34 |
+
"transformers_version": "4.17.0.dev0",
|
35 |
+
"use_cache": true,
|
36 |
+
"vocab_size": 50265
|
37 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"decoder_start_token_id": 2,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"forced_bos_token_id": 0,
|
7 |
+
"forced_eos_token_id": 2,
|
8 |
+
"max_length": 1024,
|
9 |
+
"pad_token_id": 1,
|
10 |
+
"transformers_version": "4.27.0.dev0"
|
11 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3fd086d5435c71f07dbe525e859840b1e218490bfb974d5d5cdf91506f967ee
|
3 |
+
size 1625426996
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d9dd92d3ee268740d9790bac260f0fd2fd6f7ad783b0d87769a11e7534c7cb3
|
3 |
+
size 1625481368
|
setup.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from setuptools import find_packages, setup
|
2 |
+
|
3 |
+
with open("README.md", "r", encoding="utf-8") as fh:
|
4 |
+
long_description = fh.read()
|
5 |
+
|
6 |
+
setup(
|
7 |
+
name="tessar_tokenizer",
|
8 |
+
version="0.1.0",
|
9 |
+
description="Advanced Tokenizer for Table-based Transformations by SVECTOR",
|
10 |
+
long_description=long_description,
|
11 |
+
long_description_content_type="text/markdown",
|
12 |
+
author="SVECTOR",
|
13 |
+
author_email="[email protected]",
|
14 |
+
url="https://www.svector.co.in",
|
15 |
+
packages=find_packages(),
|
16 |
+
package_data={
|
17 |
+
'tessar_tokenizer': ['*.json'],
|
18 |
+
},
|
19 |
+
install_requires=[
|
20 |
+
"transformers>=4.27.0",
|
21 |
+
"torch>=1.10.0",
|
22 |
+
"numpy>=1.19.0"
|
23 |
+
],
|
24 |
+
extras_require={
|
25 |
+
'dev': [
|
26 |
+
'pytest',
|
27 |
+
'black',
|
28 |
+
'mypy',
|
29 |
+
'isort'
|
30 |
+
]
|
31 |
+
},
|
32 |
+
classifiers=[
|
33 |
+
"Development Status :: 3 - Alpha",
|
34 |
+
"Intended Audience :: Developers",
|
35 |
+
"Intended Audience :: Science/Research",
|
36 |
+
"License :: OSI Approved :: MIT License",
|
37 |
+
"Operating System :: OS Independent",
|
38 |
+
"Programming Language :: Python :: 3.7",
|
39 |
+
"Programming Language :: Python :: 3.8",
|
40 |
+
"Programming Language :: Python :: 3.9",
|
41 |
+
"Programming Language :: Python :: 3.10",
|
42 |
+
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
43 |
+
"Topic :: Software Development :: Libraries :: Python Modules",
|
44 |
+
],
|
45 |
+
keywords="nlp tokenizer machine-learning table-transformations",
|
46 |
+
python_requires=">=3.7",
|
47 |
+
entry_points={
|
48 |
+
'console_scripts': [
|
49 |
+
'tessar-tokenizer=tessar_tokenizer.cli:main',
|
50 |
+
],
|
51 |
+
},
|
52 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"single_word": false,
|
5 |
+
"lstrip": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"normalized": true
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"single_word": false,
|
12 |
+
"lstrip": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"normalized": true
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"single_word": false,
|
19 |
+
"lstrip": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"normalized": true
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "</s>",
|
25 |
+
"single_word": false,
|
26 |
+
"lstrip": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"normalized": true
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"single_word": false,
|
33 |
+
"lstrip": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"normalized": true
|
36 |
+
},
|
37 |
+
"cls_token": {
|
38 |
+
"content": "<s>",
|
39 |
+
"single_word": false,
|
40 |
+
"lstrip": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"normalized": true
|
43 |
+
},
|
44 |
+
"mask_token": {
|
45 |
+
"content": "<mask>",
|
46 |
+
"single_word": false,
|
47 |
+
"lstrip": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"normalized": true
|
50 |
+
}
|
51 |
+
}
|
tessar_tokenizer.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from typing import List, Optional, Union
|
4 |
+
|
5 |
+
from transformers import PreTrainedTokenizerFast
|
6 |
+
|
7 |
+
|
8 |
+
class TessarTokenizer(PreTrainedTokenizerFast):
|
9 |
+
"""
|
10 |
+
Tessar Tokenizer implementation for Hugging Face Transformers
|
11 |
+
"""
|
12 |
+
|
13 |
+
model_input_names = ['input_ids', 'attention_mask']
|
14 |
+
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
vocab_file=None,
|
18 |
+
tokenizer_file=None,
|
19 |
+
do_lower_case=True,
|
20 |
+
unk_token="<unk>",
|
21 |
+
sep_token="</s>",
|
22 |
+
pad_token="<pad>",
|
23 |
+
cls_token="<s>",
|
24 |
+
mask_token="<mask>",
|
25 |
+
bos_token="<s>",
|
26 |
+
eos_token="</s>",
|
27 |
+
max_cell_length=15,
|
28 |
+
**kwargs
|
29 |
+
):
|
30 |
+
"""
|
31 |
+
Initialize the Tessar Tokenizer with specific token configurations
|
32 |
+
|
33 |
+
Args:
|
34 |
+
vocab_file (str, optional): Path to the vocabulary file
|
35 |
+
tokenizer_file (str, optional): Path to the pre-trained tokenizer file
|
36 |
+
do_lower_case (bool, optional): Whether to lowercase the input. Defaults to True.
|
37 |
+
max_cell_length (int, optional): Maximum length for cell tokenization. Defaults to 15.
|
38 |
+
"""
|
39 |
+
# Prepare special tokens
|
40 |
+
special_tokens = {
|
41 |
+
"unk_token": unk_token,
|
42 |
+
"sep_token": sep_token,
|
43 |
+
"pad_token": pad_token,
|
44 |
+
"cls_token": cls_token,
|
45 |
+
"mask_token": mask_token,
|
46 |
+
"bos_token": bos_token,
|
47 |
+
"eos_token": eos_token,
|
48 |
+
}
|
49 |
+
|
50 |
+
# Remove None values
|
51 |
+
special_tokens = {k: v for k, v in special_tokens.items() if v is not None}
|
52 |
+
|
53 |
+
# Call parent constructor
|
54 |
+
super().__init__(
|
55 |
+
vocab_file=vocab_file,
|
56 |
+
tokenizer_file=tokenizer_file,
|
57 |
+
do_lower_case=do_lower_case,
|
58 |
+
**special_tokens,
|
59 |
+
**kwargs
|
60 |
+
)
|
61 |
+
|
62 |
+
# Custom Tessar-specific attributes
|
63 |
+
self.do_lower_case = do_lower_case
|
64 |
+
self.max_cell_length = max_cell_length
|
65 |
+
|
66 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple:
|
67 |
+
"""
|
68 |
+
Save the tokenizer vocabulary and special tokens file
|
69 |
+
|
70 |
+
Args:
|
71 |
+
save_directory (str): Directory to save the vocabulary
|
72 |
+
filename_prefix (str, optional): Prefix for the saved files
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
tuple: Paths to the saved files
|
76 |
+
"""
|
77 |
+
# Prepare file paths
|
78 |
+
vocab_file = os.path.join(
|
79 |
+
save_directory,
|
80 |
+
f"{filename_prefix + '-' if filename_prefix else ''}vocab.json"
|
81 |
+
)
|
82 |
+
|
83 |
+
# Save special tokens configuration
|
84 |
+
special_tokens_file = os.path.join(
|
85 |
+
save_directory,
|
86 |
+
f"{filename_prefix + '-' if filename_prefix else ''}special_tokens.json"
|
87 |
+
)
|
88 |
+
|
89 |
+
# Save vocabulary
|
90 |
+
with open(vocab_file, 'w', encoding='utf-8') as f:
|
91 |
+
json.dump(self.vocab, f, ensure_ascii=False, indent=2)
|
92 |
+
|
93 |
+
# Save special tokens configuration
|
94 |
+
special_tokens_config = {
|
95 |
+
"unk_token": self.unk_token,
|
96 |
+
"sep_token": self.sep_token,
|
97 |
+
"pad_token": self.pad_token,
|
98 |
+
"cls_token": self.cls_token,
|
99 |
+
"mask_token": self.mask_token,
|
100 |
+
"bos_token": self.bos_token,
|
101 |
+
"eos_token": self.eos_token,
|
102 |
+
"do_lower_case": self.do_lower_case,
|
103 |
+
"max_cell_length": self.max_cell_length
|
104 |
+
}
|
105 |
+
|
106 |
+
with open(special_tokens_file, 'w', encoding='utf-8') as f:
|
107 |
+
json.dump(special_tokens_config, f, ensure_ascii=False, indent=2)
|
108 |
+
|
109 |
+
return (vocab_file, special_tokens_file)
|
110 |
+
|
111 |
+
def _tokenize(self, text: str) -> List[str]:
|
112 |
+
"""
|
113 |
+
Custom tokenization method
|
114 |
+
|
115 |
+
Args:
|
116 |
+
text (str): Input text to tokenize
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
List[str]: List of tokens
|
120 |
+
"""
|
121 |
+
# Apply lowercase if required
|
122 |
+
if self.do_lower_case:
|
123 |
+
text = text.lower()
|
124 |
+
|
125 |
+
# Use the parent tokenizer's tokenization method
|
126 |
+
tokens = super()._tokenize(text)
|
127 |
+
|
128 |
+
# Optional: Add custom cell-length truncation
|
129 |
+
tokens = tokens[:self.max_cell_length]
|
130 |
+
|
131 |
+
return tokens
|
132 |
+
|
133 |
+
def prepare_for_model(
|
134 |
+
self,
|
135 |
+
ids: List[int],
|
136 |
+
pair_ids: Optional[List[int]] = None,
|
137 |
+
**kwargs
|
138 |
+
) -> dict:
|
139 |
+
"""
|
140 |
+
Prepare tokenized inputs for the model
|
141 |
+
|
142 |
+
Args:
|
143 |
+
ids (List[int]): List of input token ids
|
144 |
+
pair_ids (Optional[List[int]], optional): List of pair token ids
|
145 |
+
|
146 |
+
Returns:
|
147 |
+
dict: Prepared model inputs
|
148 |
+
"""
|
149 |
+
# Implement any Tessar-specific model preparation logic
|
150 |
+
# This method can be extended to add Tessar-specific preprocessing
|
151 |
+
return super().prepare_for_model(ids, pair_ids, **kwargs)
|
152 |
+
|
153 |
+
# Example usage and initialization
|
154 |
+
def load_tessar_tokenizer(pretrained_model_name_or_path: str):
|
155 |
+
"""
|
156 |
+
Load a pretrained Tessar tokenizer
|
157 |
+
|
158 |
+
Args:
|
159 |
+
pretrained_model_name_or_path (str): Path to the pretrained model
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
TessarTokenizer: Initialized tokenizer
|
163 |
+
"""
|
164 |
+
return TessarTokenizer.from_pretrained(pretrained_model_name_or_path)
|
tessar_tokenizer_example.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tessar_tokenizer import TessarTokenizer, load_tessar_tokenizer
|
2 |
+
|
3 |
+
# Example 1: Initialize a new Tessar Tokenizer
|
4 |
+
tokenizer = TessarTokenizer.from_pretrained("SVECTOR-CORPORATION/Tessar-largest")
|
5 |
+
|
6 |
+
# Example 2: Tokenize a simple text
|
7 |
+
text = "Hello, how are you doing today?"
|
8 |
+
encoded = tokenizer(text, return_tensors="pt")
|
9 |
+
print("Encoded Input:", encoded)
|
10 |
+
|
11 |
+
# Example 3: Batch tokenization
|
12 |
+
texts = [
|
13 |
+
"Hello, world!",
|
14 |
+
"This is a test sentence.",
|
15 |
+
"Tokenization is an important NLP task."
|
16 |
+
]
|
17 |
+
batch_encoded = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
18 |
+
print("Batch Encoded Inputs:", batch_encoded)
|
19 |
+
|
20 |
+
# Example 4: Save and reload tokenizer
|
21 |
+
save_directory = "./tessar_tokenizer"
|
22 |
+
tokenizer.save_pretrained(save_directory)
|
23 |
+
|
24 |
+
# Reload the saved tokenizer
|
25 |
+
reloaded_tokenizer = load_tessar_tokenizer(save_directory)
|
26 |
+
|
27 |
+
# Example 5: Custom tokenization with specific parameters
|
28 |
+
custom_tokenizer = TessarTokenizer(
|
29 |
+
do_lower_case=True,
|
30 |
+
max_cell_length=20,
|
31 |
+
unk_token="[UNK]",
|
32 |
+
pad_token="[PAD]"
|
33 |
+
)
|
34 |
+
|
35 |
+
# Tokenize with custom settings
|
36 |
+
custom_text = "A custom tokenization example"
|
37 |
+
custom_encoded = custom_tokenizer(custom_text, return_tensors="pt")
|
38 |
+
print("Custom Tokenizer Encoded:", custom_encoded)
|
tokenizer_config.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_lower_case": true,
|
3 |
+
"errors": "replace",
|
4 |
+
"bos_token": {
|
5 |
+
"content": "<s>",
|
6 |
+
"single_word": false,
|
7 |
+
"lstrip": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"normalized": true,
|
10 |
+
"__type": "AddedToken"
|
11 |
+
},
|
12 |
+
"eos_token": {
|
13 |
+
"content": "</s>",
|
14 |
+
"single_word": false,
|
15 |
+
"lstrip": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"__type": "AddedToken"
|
19 |
+
},
|
20 |
+
"unk_token": {
|
21 |
+
"content": "<unk>",
|
22 |
+
"single_word": false,
|
23 |
+
"lstrip": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"normalized": true,
|
26 |
+
"__type": "AddedToken"
|
27 |
+
},
|
28 |
+
"sep_token": {
|
29 |
+
"content": "</s>",
|
30 |
+
"single_word": false,
|
31 |
+
"lstrip": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"__type": "AddedToken"
|
35 |
+
},
|
36 |
+
"cls_token": {
|
37 |
+
"content": "<s>",
|
38 |
+
"single_word": false,
|
39 |
+
"lstrip": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"normalized": true,
|
42 |
+
"__type": "AddedToken"
|
43 |
+
},
|
44 |
+
"pad_token": {
|
45 |
+
"content": "<pad>",
|
46 |
+
"single_word": false,
|
47 |
+
"lstrip": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"normalized": true,
|
50 |
+
"__type": "AddedToken"
|
51 |
+
},
|
52 |
+
"mask_token": {
|
53 |
+
"content": "<mask>",
|
54 |
+
"single_word": false,
|
55 |
+
"lstrip": true,
|
56 |
+
"rstrip": false,
|
57 |
+
"normalized": true,
|
58 |
+
"__type": "AddedToken"
|
59 |
+
},
|
60 |
+
"add_prefix_space": true,
|
61 |
+
"max_cell_length": 15,
|
62 |
+
"model_max_length": 1024,
|
63 |
+
"special_tokens_map_file": null,
|
64 |
+
"name_or_path": "SVECTOR-CORPORATION/Tessar-largest",
|
65 |
+
"use_fast": true,
|
66 |
+
"tokenizer_class": "TessarTokenizer"
|
67 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|