jianguozhang commited on
Commit
c52e518
Β·
verified Β·
1 Parent(s): 9cb6fce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -13
README.md CHANGED
@@ -52,20 +52,37 @@ We've also refined the **chat template** and **vLLM integration**, making it eas
52
  - [Benchmark Results](#benchmark-results)
53
  - [Citation](#citation)
54
 
 
55
  ## Model Series
56
 
57
- We provide a series of xLAMs in different sizes to cater to various applications, including those optimized for multi-turn conversation and tool usage:
 
 
58
 
59
- | Model | # Total Params | Context Length | Release Date | Base Model | Category | Download Model | Download GGUF files |
60
- |------------------------------|----------------|----------------|--------------|-----------------|---------------------------------------------|------------------------------------------------------------------------------|---------------------|
61
- | Salesforce/Llama-xLAM-2-70b-fc-r | 70B | 128k | Mar. 26, 2025 | Llama 3.1/3.2 | Multi-turn Conversation, Tool-usage | [πŸ€— Link](https://huggingface.co/Salesforce/Llama-xLAM-2-70b-fc-r) | NA |
62
- | Salesforce/Llama-xLAM-2-8b-fc-r | 8B | 128k | Mar. 26, 2025 |Llama 3.1/3.2 | Multi-turn Conversation, Tool-usage | [πŸ€— Link](https://huggingface.co/Salesforce/Llama-xLAM-2-8b-fc-r) | [πŸ€— Link](https://huggingface.co/Salesforce/Llama-xLAM-2-8b-fc-r-gguf) |
63
- | Salesforce/xLAM-2-32b-fc-r | 32B | 32k (max 128k)* | Mar. 26, 2025 | Qwen 2.5 | Multi-turn Conversation, Tool-usage | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-2-32b-fc-r) | NA |
64
- | Salesforce/xLAM-2-3b-fc-r | 3B | 32k (max 128k)* | Mar. 26, 2025 | Qwen 2.5 | Multi-turn Conversation, Tool-usage | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-2-3b-fc-r) | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-2-3b-fc-r-gguf) |
65
- | Salesforce/xLAM-2-1b-fc-r | 1B | 32k (max 128k)* | Mar. 26, 2025 | Qwen 2.5 | Multi-turn Conversation, Tool-usage, Lightweight | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-2-1b-fc-r) | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-2-1b-fc-r-gguf) |
 
 
 
 
 
 
66
 
67
  ***Note:** The default context length for Qwen-2.5-based models is 32k, but you can use techniques like YaRN (Yet Another Recursive Network) to achieve maximum 128k context length. Please refer to [here](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct#processing-long-texts) for more details.
68
 
 
 
 
 
 
 
 
 
69
  ## Usage
70
 
71
  ### Framework versions
@@ -169,16 +186,14 @@ For all Llama relevant models, please also follow corresponding Llama license an
169
  If you use our model or dataset in your work, please cite our paper:
170
 
171
  ```bibtex
172
- @article{prabhakar2025apigenmt,
173
- title={APIGen-MT: Agentic Pipeline for Multi-Turn Data Generation via Simulated Agent-Human Interplay},
174
- author={Prabhakar, Akshara and Liu, Zuxin and Yao, Weiran and Zhang, Jianguo and Zhu, Ming and Wang, Shiyu and Liu, Zhiwei and Awalgaonkar, Tulika and Chen, Haolin and Hoang, Thai and Niebles, Juan Carlos and Heinecke, Shelby and Wang, Huan and Savarese, Silvio and Xiong, Caiming},
175
  journal={arXiv preprint arXiv:2504.03601},
176
  year={2025}
177
  }
178
  ```
179
 
180
- Additionally, please check our other related works regarding xLAM and consider citing them as well:
181
-
182
  ```bibtex
183
  @article{zhang2025actionstudio,
184
  title={ActionStudio: A Lightweight Framework for Data and Training of Action Models},
@@ -195,7 +210,10 @@ Additionally, please check our other related works regarding xLAM and consider c
195
  journal={arXiv preprint arXiv:2409.03215},
196
  year={2024}
197
  }
 
198
  ```
 
 
199
 
200
  ```bibtex
201
  @article{liu2024apigen,
 
52
  - [Benchmark Results](#benchmark-results)
53
  - [Citation](#citation)
54
 
55
+ ---
56
  ## Model Series
57
 
58
+ [xLAM](https://huggingface.co/collections/Salesforce/xlam-models-65f00e2a0a63bbcd1c2dade4) series are significant better at many things including general tasks and function calling.
59
+ For the same number of parameters, the model have been fine-tuned across a wide range of agent tasks and scenarios, all while preserving the capabilities of the original model.
60
+
61
 
62
+ | Model | # Total Params | Context Length |Release Date | Category | Download Model | Download GGUF files |
63
+ |------------------------|----------------|------------|-------------|-------|----------------|----------|
64
+ | Llama-xLAM-2-70b-fc-r | 70B | 128k | Mar. 26, 2025 | Multi-turn Conversation, Function-calling | [πŸ€— Link](https://huggingface.co/Salesforce/Llama-xLAM-2-70b-fc-r) | NA |
65
+ | Llama-xLAM-2-8b-fc-r | 8B | 128k | Mar. 26, 2025 | Multi-turn Conversation, Function-calling | [πŸ€— Link](https://huggingface.co/Salesforce/Llama-xLAM-2-8b-fc-r) | [πŸ€— Link](https://huggingface.co/Salesforce/Llama-xLAM-2-8b-fc-r-gguf) |
66
+ | xLAM-2-32b-fc-r | 32B | 32k (max 128k)* | Mar. 26, 2025 | Multi-turn Conversation, Function-calling | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-2-32b-fc-r) | NA |
67
+ | xLAM-2-3b-fc-r | 3B | 32k (max 128k)* | Mar. 26, 2025 | Multi-turn Conversation, Function-calling | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-2-3b-fc-r) | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-2-3b-fc-r-gguf) |
68
+ | xLAM-2-1b-fc-r | 1B | 32k (max 128k)* | Mar. 26, 2025 | Multi-turn Conversation, Function-calling | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-2-1b-fc-r) | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-2-1b-fc-r-gguf) |
69
+ | xLAM-7b-r | 7.24B | 32k | Sep. 5, 2024|General, Function-calling | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-7b-r) | -- |
70
+ | xLAM-8x7b-r | 46.7B | 32k | Sep. 5, 2024|General, Function-calling | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-8x7b-r) | -- |
71
+ | xLAM-8x22b-r | 141B | 64k | Sep. 5, 2024|General, Function-calling | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-8x22b-r) | -- |
72
+ | xLAM-1b-fc-r | 1.35B | 16k | July 17, 2024 | Function-calling| [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-1b-fc-r) | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-1b-fc-r-gguf) |
73
+ | xLAM-7b-fc-r | 6.91B | 4k | July 17, 2024| Function-calling| [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-7b-fc-r) | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-7b-fc-r-gguf) |
74
+ | xLAM-v0.1-r | 46.7B | 32k | Mar. 18, 2024 |General, Function-calling | [πŸ€— Link](https://huggingface.co/Salesforce/xLAM-v0.1-r) | -- |
75
 
76
  ***Note:** The default context length for Qwen-2.5-based models is 32k, but you can use techniques like YaRN (Yet Another Recursive Network) to achieve maximum 128k context length. Please refer to [here](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct#processing-long-texts) for more details.
77
 
78
+
79
+ ### πŸ“¦ Model Naming Conventions
80
+ - `xLAM-7b-r`: A general-purpose v1.0 or v2.0 release of the **Large Action Model**, fine-tuned for broad agentic capabilities. The `-r` suffix indicates it is a **research** release.
81
+ - `xLAM-7b-fc-r`: A specialized variant where `-fc` denotes fine-tuning for **function calling** tasks, also marked for **research** use.
82
+ - βœ… All models are fully compatible with VLLM, FastChat, and Transformers-based inference frameworks.
83
+
84
+ ---
85
+
86
  ## Usage
87
 
88
  ### Framework versions
 
186
  If you use our model or dataset in your work, please cite our paper:
187
 
188
  ```bibtex
189
+ @article{prabhakar2025apigen,
190
+ title={APIGen-MT: Agentic PIpeline for Multi-Turn Data Generation via Simulated Agent-Human Interplay},
191
+ author={Prabhakar, Akshara and Liu, Zuxin and Zhu, Ming and Zhang, Jianguo and Awalgaonkar, Tulika and Wang, Shiyu and Liu, Zhiwei and Chen, Haolin and Hoang, Thai and others},
192
  journal={arXiv preprint arXiv:2504.03601},
193
  year={2025}
194
  }
195
  ```
196
 
 
 
197
  ```bibtex
198
  @article{zhang2025actionstudio,
199
  title={ActionStudio: A Lightweight Framework for Data and Training of Action Models},
 
210
  journal={arXiv preprint arXiv:2409.03215},
211
  year={2024}
212
  }
213
+
214
  ```
215
+ Additionally, please check our other related works regarding xLAM and consider citing them as well:
216
+
217
 
218
  ```bibtex
219
  @article{liu2024apigen,