File size: 16,577 Bytes
1484d4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import os
import re
import tqdm
import ujson
from pydload import dload
import zipfile
from abc import ABC, abstractmethod, abstractproperty
from indicnlp.normalize.indic_normalize import IndicNormalizerFactory
from urduhack import normalize as shahmukhi_normalize
from ..utils import *
LANG_WORD_REGEXES = {
lang_name: re.compile(f"[{SCRIPT_CODE_TO_UNICODE_CHARS_RANGE_STR[script_name]}]+")
for lang_name, script_name in LANG_CODE_TO_SCRIPT_CODE.items()
}
MODEL_FILE = 'transformer/indicxlit.pt'
DICTS_FOLDER = 'word_prob_dicts'
CHARS_FOLDER = 'corpus-bin'
DICT_FILE_FORMAT = '%s_word_prob_dict.json'
LANG_LIST_FILE = '../lang_list.txt'
normalizer_factory = IndicNormalizerFactory()
class BaseEngineTransformer(ABC):
@abstractproperty
def all_supported_langs(self):
pass
@abstractproperty
def tgt_langs(self):
pass
def __init__(self, models_path, beam_width, rescore):
# added by yash
print("Initializing Multilingual model for transliteration")
if 'en' in self.tgt_langs:
lang_pairs_csv = ','.join([lang+"-en" for lang in self.all_supported_langs])
else:
lang_pairs_csv = ','.join(["en-"+lang for lang in self.all_supported_langs])
# initialize the model
from .custom_interactive import Transliterator
self.transliterator = Transliterator(
os.path.join(models_path, CHARS_FOLDER),
os.path.join(models_path, MODEL_FILE),
lang_pairs_csv = lang_pairs_csv,
lang_list_file = os.path.join(models_path, LANG_LIST_FILE),
beam = beam_width, batch_size = 32,
)
self.beam_width = beam_width
self._rescore = rescore
if self._rescore:
# loading the word_prob_dict for rescoring module
dicts_folder = os.path.join(models_path, DICTS_FOLDER)
self.word_prob_dicts = {}
for la in tqdm.tqdm(self.tgt_langs, desc="Loading dicts into RAM"):
self.word_prob_dicts[la] = ujson.load(open(
os.path.join(dicts_folder, DICT_FILE_FORMAT%la)
))
def download_models(self, models_path, download_url):
'''
Download models from bucket
'''
# added by yash
model_file_path = os.path.join(models_path, MODEL_FILE)
if not os.path.isfile(model_file_path):
print('Downloading Multilingual model for transliteration')
remote_url = download_url
downloaded_zip_path = os.path.join(models_path, 'model.zip')
dload(url=remote_url, save_to_path=downloaded_zip_path, max_time=None)
if not os.path.isfile(downloaded_zip_path):
exit(f'ERROR: Unable to download model from {remote_url} into {models_path}')
with zipfile.ZipFile(downloaded_zip_path, 'r') as zip_ref:
zip_ref.extractall(models_path)
if os.path.isfile(model_file_path):
os.remove(downloaded_zip_path)
else:
exit(f'ERROR: Unable to find models in {models_path} after download')
print("Models downloaded to:", models_path)
print("NOTE: When uninstalling this library, REMEMBER to delete the models manually")
return model_file_path
def download_dicts(self, models_path, download_url):
'''
Download language model probablitites dictionaries
'''
dicts_folder = os.path.join(models_path, DICTS_FOLDER)
if not os.path.isdir(dicts_folder):
# added by yash
print('Downloading language model probablitites dictionaries for rescoring module')
remote_url = download_url
downloaded_zip_path = os.path.join(models_path, 'dicts.zip')
dload(url=remote_url, save_to_path=downloaded_zip_path, max_time=None)
if not os.path.isfile(downloaded_zip_path):
exit(f'ERROR: Unable to download model from {remote_url} into {models_path}')
with zipfile.ZipFile(downloaded_zip_path, 'r') as zip_ref:
zip_ref.extractall(models_path)
if os.path.isdir(dicts_folder):
os.remove(downloaded_zip_path)
else:
exit(f'ERROR: Unable to find models in {models_path} after download')
return dicts_folder
def indic_normalize(self, words, lang_code):
if lang_code not in ['gom', 'ks', 'ur', 'mai', 'brx', 'mni']:
normalizer = normalizer_factory.get_normalizer(lang_code)
words = [ normalizer.normalize(word) for word in words ]
if lang_code in ['mai', 'brx' ]:
normalizer = normalizer_factory.get_normalizer('hi')
words = [ normalizer.normalize(word) for word in words ]
if lang_code in [ 'ur' ]:
words = [ shahmukhi_normalize(word) for word in words ]
if lang_code == 'gom':
normalizer = normalizer_factory.get_normalizer('kK')
words = [ normalizer.normalize(word) for word in words ]
# normalize and tokenize the words
# words = self.normalize(words)
# manully mapping certain characters
# words = self.hard_normalizer(words)
return words
def pre_process(self, words, src_lang, tgt_lang):
# TODO: Move normalize outside to efficiently perform at sentence-level
if src_lang != 'en':
self.indic_normalize(words, src_lang)
# convert the word into sentence which contains space separated chars
words = [' '.join(list(word.lower())) for word in words]
lang_code = tgt_lang if src_lang == 'en' else src_lang
# adding language token
words = ['__'+ lang_code +'__ ' + word for word in words]
return words
def rescore(self, res_dict, result_dict, tgt_lang, alpha ):
alpha = alpha
# word_prob_dict = {}
word_prob_dict = self.word_prob_dicts[tgt_lang]
candidate_word_prob_norm_dict = {}
candidate_word_result_norm_dict = {}
input_data = {}
for i in res_dict.keys():
input_data[res_dict[i]['S']] = []
for j in range(len(res_dict[i]['H'])):
input_data[res_dict[i]['S']].append( res_dict[i]['H'][j][0] )
for src_word in input_data.keys():
candidates = input_data[src_word]
candidates = [' '.join(word.split(' ')) for word in candidates]
total_score = 0
if src_word.lower() in result_dict.keys():
for candidate_word in candidates:
if candidate_word in result_dict[src_word.lower()].keys():
total_score += result_dict[src_word.lower()][candidate_word]
candidate_word_result_norm_dict[src_word.lower()] = {}
for candidate_word in candidates:
candidate_word_result_norm_dict[src_word.lower()][candidate_word] = (result_dict[src_word.lower()][candidate_word]/total_score)
candidates = [''.join(word.split(' ')) for word in candidates ]
total_prob = 0
for candidate_word in candidates:
if candidate_word in word_prob_dict.keys():
total_prob += word_prob_dict[candidate_word]
candidate_word_prob_norm_dict[src_word.lower()] = {}
for candidate_word in candidates:
if candidate_word in word_prob_dict.keys():
candidate_word_prob_norm_dict[src_word.lower()][candidate_word] = (word_prob_dict[candidate_word]/total_prob)
output_data = {}
for src_word in input_data.keys():
temp_candidates_tuple_list = []
candidates = input_data[src_word]
candidates = [ ''.join(word.split(' ')) for word in candidates]
for candidate_word in candidates:
if candidate_word in word_prob_dict.keys():
temp_candidates_tuple_list.append((candidate_word, alpha*candidate_word_result_norm_dict[src_word.lower()][' '.join(list(candidate_word))] + (1-alpha)*candidate_word_prob_norm_dict[src_word.lower()][candidate_word] ))
else:
temp_candidates_tuple_list.append((candidate_word, 0 ))
temp_candidates_tuple_list.sort(key = lambda x: x[1], reverse = True )
temp_candidates_list = []
for cadidate_tuple in temp_candidates_tuple_list:
temp_candidates_list.append(' '.join(list(cadidate_tuple[0])))
output_data[src_word] = temp_candidates_list
return output_data
def post_process(self, translation_str, tgt_lang):
lines = translation_str.split('\n')
list_s = [line for line in lines if 'S-' in line]
# list_t = [line for line in lines if 'T-' in line]
list_h = [line for line in lines if 'H-' in line]
# list_d = [line for line in lines if 'D-' in line]
list_s.sort(key = lambda x: int(x.split('\t')[0].split('-')[1]) )
# list_t.sort(key = lambda x: int(x.split('\t')[0].split('-')[1]) )
list_h.sort(key = lambda x: int(x.split('\t')[0].split('-')[1]) )
# list_d.sort(key = lambda x: int(x.split('\t')[0].split('-')[1]) )
res_dict = {}
for s in list_s:
s_id = int(s.split('\t')[0].split('-')[1])
res_dict[s_id] = { 'S' : s.split('\t')[1] }
# for t in list_t:
# t_id = int(t.split('\t')[0].split('-')[1])
# if s_id == t_id:
# res_dict[s_id]['T'] = t.split('\t')[1]
res_dict[s_id]['H'] = []
# res_dict[s_id]['D'] = []
for h in list_h:
h_id = int(h.split('\t')[0].split('-')[1])
if s_id == h_id:
res_dict[s_id]['H'].append( ( h.split('\t')[2], pow(2,float(h.split('\t')[1])) ) )
# for d in list_d:
# d_id = int(d.split('\t')[0].split('-')[1])
# if s_id == d_id:
# res_dict[s_id]['D'].append( ( d.split('\t')[2], pow(2,float(d.split('\t')[1])) ) )
for r in res_dict.keys():
res_dict[r]['H'].sort(key = lambda x : float(x[1]) ,reverse =True)
# res_dict[r]['D'].sort(key = lambda x : float(x[1]) ,reverse =True)
# for rescoring
result_dict = {}
for i in res_dict.keys():
result_dict[res_dict[i]['S']] = {}
for j in range(len(res_dict[i]['H'])):
result_dict[res_dict[i]['S']][res_dict[i]['H'][j][0]] = res_dict[i]['H'][j][1]
transliterated_word_list = []
if self._rescore:
output_dir = self.rescore(res_dict, result_dict, tgt_lang, alpha = 0.9)
for src_word in output_dir.keys():
for j in range(len(output_dir[src_word])):
transliterated_word_list.append( output_dir[src_word][j] )
else:
for i in res_dict.keys():
# transliterated_word_list.append( res_dict[i]['S'] + ' : ' + res_dict[i]['H'][0][0] )
for j in range(len(res_dict[i]['H'])):
transliterated_word_list.append( res_dict[i]['H'][j][0] )
# remove extra spaces
# transliterated_word_list = [''.join(pair.split(':')[0].split(' ')[1:]) + ' : ' + ''.join(pair.split(':')[1].split(' ')) for pair in transliterated_word_list]
transliterated_word_list = [''.join(word.split(' ')) for word in transliterated_word_list]
return transliterated_word_list
def _transliterate_word(self, text, src_lang, tgt_lang, topk=4, nativize_punctuations=True, nativize_numerals=False):
if not text:
return text
text = text.lower().strip()
if src_lang != 'en':
# Our model does not transliterate native punctuations or numerals
# So process them first so that they are not considered for transliteration
text = text.translate(INDIC_TO_LATIN_PUNCT_TRANSLATOR)
text = text.translate(INDIC_TO_STANDARD_NUMERALS_TRANSLATOR)
else:
# Transliterate punctuations & numerals if tgt_lang is Indic
if nativize_punctuations:
if tgt_lang in RTL_LANG_CODES:
text = text.translate(LATIN_TO_PERSOARABIC_PUNC_TRANSLATOR)
text = nativize_latin_fullstop(text, tgt_lang)
if nativize_numerals:
text = text.translate(LATIN_TO_NATIVE_NUMERALS_TRANSLATORS[tgt_lang])
matches = LANG_WORD_REGEXES[src_lang].findall(text)
if not matches:
return [text]
src_word = matches[-1]
transliteration_list = self.batch_transliterate_words([src_word], src_lang, tgt_lang, topk=topk)[0]
if tgt_lang != 'en' or tgt_lang != 'sa':
# If users want to avoid yuktAkshara, this is facilitated by allowing them to type subwords inorder to construct a word
# For example, "ଜନ୍ସନ୍ଙ୍କୁ" can be written by "ଜନ୍" + "ସନ୍" + "କୁ"
# Not enabled for Sanskrit, as sandhi compounds are generally written word-by-word
for i in range(len(transliteration_list)):
transliteration_list[i] = hardfix_wordfinal_virama(transliteration_list[i])
if src_word == text:
return transliteration_list
return [
rreplace(text, src_word, tgt_word)
for tgt_word in transliteration_list
]
def batch_transliterate_words(self, words, src_lang, tgt_lang, topk=4):
perprcossed_words = self.pre_process(words, src_lang, tgt_lang)
translation_str = self.transliterator.translate(perprcossed_words, nbest=topk)
# FIXME: Handle properly in `post_process()` to return results for all words
transliteration_list = self.post_process(translation_str, tgt_lang)
# Lang-specific patches. TODO: Move to indic-nlp-library
if tgt_lang == 'mr':
for i in range(len(transliteration_list)):
transliteration_list[i] = transliteration_list[i].replace("अॅ", 'ॲ')
if tgt_lang == 'or':
for i in range(len(transliteration_list)):
transliteration_list[i] = fix_odia_confusing_ambiguous_yuktakshara(transliteration_list[i])
if tgt_lang == 'sa':
for i in range(len(transliteration_list)):
transliteration_list[i] = explicit_devanagari_wordfinal_schwa_delete(words[0], transliteration_list[i])
# Retain only unique, preserving order
transliteration_list = list(dict.fromkeys(transliteration_list))
return [transliteration_list]
def _transliterate_sentence(self, text, src_lang, tgt_lang, nativize_punctuations=True, nativize_numerals=False):
# TODO: Minimize code redundancy with `_transliterate_word()`
if not text:
return text
text = text.lower().strip()
if src_lang != 'en':
# Our model does not transliterate native punctuations or numerals
# So process them first so that they are not considered for transliteration
text = text.translate(INDIC_TO_LATIN_PUNCT_TRANSLATOR)
text = text.translate(INDIC_TO_STANDARD_NUMERALS_TRANSLATOR)
else:
# Transliterate punctuations & numerals if tgt_lang is Indic
if nativize_punctuations:
if tgt_lang in RTL_LANG_CODES:
text = text.translate(LATIN_TO_PERSOARABIC_PUNC_TRANSLATOR)
text = nativize_latin_fullstop(text, tgt_lang)
if nativize_numerals:
text = text.translate(LATIN_TO_NATIVE_NUMERALS_TRANSLATORS[tgt_lang])
matches = LANG_WORD_REGEXES[src_lang].findall(text)
if not matches:
return text
out_str = text
for match in matches:
result = self.batch_transliterate_words([match], src_lang, tgt_lang)[0][0]
out_str = re.sub(match, result, out_str, 1)
return out_str
|