Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
pipeline_tag: tabular-regression
|
4 |
+
tags:
|
5 |
+
- stock-prediction
|
6 |
+
- finance
|
7 |
+
- deep-learning
|
8 |
+
- keras
|
9 |
+
- tensorflow
|
10 |
+
---
|
11 |
+
|
12 |
+
# π Stock Price Prediction Model
|
13 |
+
|
14 |
+
This model predicts the closing stock price using historical market data.
|
15 |
+
It uses a deep learning LSTM model trained on Yahoo Finance data.
|
16 |
+
|
17 |
+
## π How to Use
|
18 |
+
|
19 |
+
```python
|
20 |
+
import requests
|
21 |
+
|
22 |
+
API_URL = "https://api-inference.huggingface.co/models/YourUserName/YourModelName"
|
23 |
+
headers = {"Authorization": "Bearer YOUR_HUGGINGFACE_TOKEN"}
|
24 |
+
|
25 |
+
data = {
|
26 |
+
"inputs": "RELIANCE.NS"
|
27 |
+
}
|
28 |
+
|
29 |
+
response = requests.post(API_URL, headers=headers, json=data)
|
30 |
+
print(response.json())
|
31 |
+
```
|
32 |
+
|
33 |
+
## π₯ Example
|
34 |
+
|
35 |
+
**Input:**
|
36 |
+
```json
|
37 |
+
{"inputs": "RELIANCE.NS"}
|
38 |
+
```
|
39 |
+
|
40 |
+
**Output:**
|
41 |
+
```json
|
42 |
+
{"prediction": 2978.45}
|
43 |
+
```
|
44 |
+
|
45 |
+
## π¨βπ» Author
|
46 |
+
- SelvaprakashV
|
47 |
+
|
48 |
+
## π License
|
49 |
+
Apache 2.0
|