Shuu12121 commited on
Commit
a5c0020
·
verified ·
1 Parent(s): 737c37b

Upload ModernBERT model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,621 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:2022217
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: Shuu12121/CodeModernBERT-Crow
10
+ widget:
11
+ - source_sentence: 'Clone value to a new instance
12
+
13
+
14
+ @private
15
+
16
+ @param {*} val
17
+
18
+ @returns {*}'
19
+ sentences:
20
+ - "function _copy(val) {\n const type = $type(val);\n\n if (type == 'object')\
21
+ \ {\n val = _extend({}, val, true);\n } else if (type == 'array') {\n\
22
+ \ val = val.slice(0);\n }\n\n return val;\n}"
23
+ - "function (data) {\n data = data || {};\n\n this.category = data.hasOwnProperty('category')\
24
+ \ ? data.category : 'No category';\n this.id = data.hasOwnProperty('id') ?\
25
+ \ data.id : '';\n this.group = data.hasOwnProperty('group') ? data.group :\
26
+ \ '';\n this.lines = data.hasOwnProperty('lines') ? data.lines : 0;\n this.name\
27
+ \ = data.hasOwnProperty('name') ? data.name : '';\n this.options = data.hasOwnProperty('options')\
28
+ \ ? data.options : {};\n this.origin = data.hasOwnProperty('origin') ? data.origin\
29
+ \ : '';\n this.resources = data.hasOwnProperty('resources') ? data.resources\
30
+ \ : Object.assign({}, getDefaultOptions().resources);\n this.usage = data.hasOwnProperty('usage')\
31
+ \ ? data.usage : [];\n this.viewId = data.hasOwnProperty('viewId') ? data.viewId\
32
+ \ : '';\n}"
33
+ - "public function relativeMove($model, $position)\n {\n $conditionAttributes\
34
+ \ = (array)$this->conditionAttributes;\n $owner = $this->owner;\n\n \
35
+ \ if (!empty($conditionAttributes)) {\n $sameCondition = true;\n\
36
+ \ foreach ($conditionAttributes as $attr) {\n if ($owner->getAttribute($attr)\
37
+ \ != $model->getAttribute($attr)) {\n $sameCondition = false;\n\
38
+ \ break;\n }\n }\n if\
39
+ \ (!$sameCondition) {\n // move in other condition category\n \
40
+ \ $this->moveToTop();\n // update condition attribute\n\
41
+ \ $condition = [];\n foreach ($conditionAttributes\
42
+ \ as $attr) {\n $condition[$attr] = $model->getAttribute($attr);\n\
43
+ \ }\n $condition[$this->sortAttribute] = $owner->find()->andWhere($this->getCondition())->count()\
44
+ \ - 1;\n $owner->updateAttributes($condition);\n }\n\
45
+ \ }\n // calculate pos change\n $currentPos = $owner->getAttribute($this->sortAttribute);\n\
46
+ \ $destinationPos = $model->getAttribute($this->sortAttribute);\n \
47
+ \ if ($position == 'after') {\n $newPos = $destinationPos > $currentPos\
48
+ \ ? $destinationPos - 1 : $destinationPos;\n } else {\n $newPos\
49
+ \ = $destinationPos > $currentPos ? $destinationPos : $destinationPos + 1;\n \
50
+ \ }\n $this->moveToPosition($newPos);\n }"
51
+ - source_sentence: '/*
52
+
53
+ Realize an asynchronous squeue command on slurm according a parameter (or not).
54
+
55
+ Data are formated into a literal.
56
+
57
+ @paramSqueue {string} optional. For example : '' -o "%j %i" '' // not implemented
58
+ yet'
59
+ sentences:
60
+ - "function(paramSqueue) {\n if (!paramSqueue) paramSqueue = '';\n paramSqueue\
61
+ \ = ''; // to remove when it will be take into account in the implementation\n\
62
+ \ var emitter = new events.EventEmitter();\n var squeueRes_dict = {\n \
63
+ \ 'id': [],\n 'partition': [],\n 'nameUUID': [],\n 'status':\
64
+ \ []\n }\n\n // squeue command\n var exec_cmd = require('child_process').exec;\n\
65
+ \ exec_cmd(queueBinary + ' -o \\\"\\%i \\%P \\%j \\%t\\\" ' + paramSqueue,\
66
+ \ function(err, stdout, stderr) {\n if (err) {\n emitter.emit('listError',\
67
+ \ err);\n return;\n }\n var squeueRes_str = ('' + stdout).replace(/\\\
68
+ \"/g, ''); // squeue results\n squeueRes_str.split('\\n')\n \
69
+ \ .filter(function(jobArray, i) {\n return jobArray.length > 0\
70
+ \ && i > 0;\n })\n .map(function(jobLine, i) { // for each\
71
+ \ job\n return test = jobLine.split(' ').filter(function(val) {\n\
72
+ \ return val != ''; // keep values that are not empty\n \
73
+ \ });\n })\n .map(function(jobArray, i) { //\
74
+ \ save each field in the corresponding array of dict\n squeueRes_dict.id.push(jobArray[0]);\
75
+ \ // job ID gived by slurm\n squeueRes_dict.partition.push(jobArray[1]);\
76
+ \ // gpu, cpu, etc.\n squeueRes_dict.nameUUID.push(jobArray[2]);\
77
+ \ // unique job ID gived by Nslurm (uuid)\n squeueRes_dict.status.push(jobArray[3]);\
78
+ \ // P, R, CF, CG, etc.\n });\n emitter.emit('data', squeueRes_dict);\n\
79
+ \ });\n return emitter;\n}"
80
+ - "function(node, state, leaving) {\n for (let i = 0; i < state.currentSegments.length;\
81
+ \ ++i) {\n const segInternal = state.currentSegments[i].internal;\n\
82
+ \n if (leaving) {\n segInternal.exitNodes.push(node);\n\
83
+ \ } else {\n segInternal.nodes.push(node);\n \
84
+ \ }\n }\n\n debug([\n `${state.currentSegments.map(getId).join(\"\
85
+ ,\")})`,\n `${node.type}${leaving ? \":exit\" : \"\"}`\n ].join(\"\
86
+ \ \"));\n }"
87
+ - "private void checkForGenerator(final Class<?> clazz, Field field, GeneratedValue\
88
+ \ generatedValue, String schemaName)\n\n {\n\n TableGenerator tableGenerator\
89
+ \ = field.getAnnotation(TableGenerator.class);\n SequenceGenerator sequenceGenerator\
90
+ \ = field.getAnnotation(SequenceGenerator.class);\n if (tableGenerator\
91
+ \ == null || !tableGenerator.name().equals(generatedValue.generator()))\n \
92
+ \ {\n tableGenerator = clazz.getAnnotation(TableGenerator.class);\n\
93
+ \ }\n if (sequenceGenerator == null || !sequenceGenerator.name().equals(generatedValue.generator()))\n\
94
+ \ {\n sequenceGenerator = clazz.getAnnotation(SequenceGenerator.class);\n\
95
+ \ }\n\n if ((tableGenerator == null && sequenceGenerator == null)\n\
96
+ \ || (tableGenerator != null && !tableGenerator.name().equals(generatedValue.generator()))\n\
97
+ \ || (sequenceGenerator != null && !sequenceGenerator.name().equals(generatedValue.generator())))\n\
98
+ \ {\n\n throw new RuleValidationException(\"Unknown Id.generator:\
99
+ \ \" + generatedValue.generator());\n\n }\n else if ((tableGenerator\
100
+ \ != null && !tableGenerator.schema().isEmpty() && !tableGenerator.schema().equals(\n\
101
+ \ schemaName))\n || (sequenceGenerator != null &&\
102
+ \ !sequenceGenerator.schema().isEmpty() && !sequenceGenerator.schema()\n \
103
+ \ .equals(schemaName)))\n {\n\n throw new\
104
+ \ RuleValidationException(\"Generator \" + generatedValue.generator() + \" in\
105
+ \ entity : \"\n + clazz.getName() + \" has different schema\
106
+ \ name ,it should be same as entity have\");\n\n }\n\n }"
107
+ - source_sentence: '@param $param1
108
+
109
+ @param null $param2
110
+
111
+ @param null $param3
112
+
113
+
114
+ @return array|int|mixed
115
+
116
+ @throws DbException'
117
+ sentences:
118
+ - "func (s *GetReservationUtilizationOutput) SetUtilizationsByTime(v []*UtilizationByTime)\
119
+ \ *GetReservationUtilizationOutput {\n\ts.UtilizationsByTime = v\n\treturn s\n\
120
+ }"
121
+ - "public static function ask($param1, $param2 = null, $param3 = null) {\n \
122
+ \ self::init();\n if(is_array($param1)) {\n return self::smartSelect($param1,\
123
+ \ $param2, $param3);\n } else {\n switch(substr($param1, 0,\
124
+ \ 1)) {\n case '>':\n case '/':\n \
125
+ \ return self::smartQuery($param1, $param2);\n break;\n\
126
+ \ case '?':\n return self::smartSelect(substr($param1,\
127
+ \ 1), $param2, $param3);\n break;\n default:\n\
128
+ \ if(is_array($param3)) {\n return self::smartUpdate($param1,\
129
+ \ $param2, $param3);\n } else {\n return\
130
+ \ self::smartInsert($param1, $param2);\n }\n }\n\
131
+ \ }\n }"
132
+ - "void printStates() {\n int c; // input \"character\"\n \
133
+ \ int n; // state number\n\n System.out.print(\"state |\
134
+ \ i n p u t s y m b o l s \\n\");\n System.out.print(\"\
135
+ \ | Acc LA Tag\");\n for (c=0; c<fRB.fSetBuilder.getNumCharCategories();\
136
+ \ c++) {\n RBBINode.printInt(c, 3);\n }\n System.out.print(\"\
137
+ \\n\");\n System.out.print(\" |---------------\");\n \
138
+ \ for (c=0; c<fRB.fSetBuilder.getNumCharCategories(); c++) {\n System.out.print(\"\
139
+ ---\");\n }\n System.out.print(\"\\n\");\n\n for\
140
+ \ (n=0; n<fDStates.size(); n++) {\n RBBIStateDescriptor sd = fDStates.get(n);\n\
141
+ \ RBBINode.printInt(n, 5);\n System.out.print(\" |\
142
+ \ \");\n\n RBBINode.printInt(sd.fAccepting, 3);\n \
143
+ \ RBBINode.printInt(sd.fLookAhead, 4);\n RBBINode.printInt(sd.fTagsIdx,\
144
+ \ 6);\n System.out.print(\" \");\n for (c=0; c<fRB.fSetBuilder.getNumCharCategories();\
145
+ \ c++) {\n RBBINode.printInt(sd.fDtran[c], 3);\n \
146
+ \ }\n System.out.print(\"\\n\");\n }\n System.out.print(\"\
147
+ \\n\\n\");\n }"
148
+ - source_sentence: 'Performs a forward, allowing page-relative paths and setting all
149
+ values
150
+
151
+ compatible with &lt;ao:forward&gt; tag.
152
+
153
+
154
+ @param args The arguments for the page, make unmodifiable and accessible as
155
+ request-scope var "arg"
156
+
157
+
158
+ @see #forward(java.lang.String, javax.servlet.RequestDispatcher, javax.servlet.http.HttpServletRequest,
159
+ javax.servlet.http.HttpServletResponse, java.util.Map)'
160
+ sentences:
161
+ - "public static void forward(\n\t\tServletContext servletContext,\n\t\tString page,\n\
162
+ \t\tHttpServletRequest request,\n\t\tHttpServletResponse response,\n\t\tMap<String,?>\
163
+ \ args\n\t) throws ServletException, IOException {\n\t\t// Resolve the dispatcher\n\
164
+ \t\tString contextRelativePath = ServletUtil.getAbsolutePath(getCurrentPagePath(request),\
165
+ \ page);\n\t\tRequestDispatcher dispatcher = servletContext.getRequestDispatcher(contextRelativePath);\n\
166
+ \t\tif(dispatcher==null) throw new LocalizedServletException(accessor, \"Dispatcher.dispatcherNotFound\"\
167
+ , contextRelativePath);\n\t\tforward(contextRelativePath, dispatcher, request,\
168
+ \ response, args);\n\t}"
169
+ - "public function getConnection($name = ''): QueryBuilderInterface\n\t{\n\t\t//\
170
+ \ If the parameter is a string, use it as an array index\n\t\tif (is_scalar($name)\
171
+ \ && isset($this->connections[$name]))\n\t\t{\n\t\t\treturn $this->connections[$name];\n\
172
+ \t\t}\n\t\telse if (empty($name) && ! empty($this->connections)) // Otherwise,\
173
+ \ return the last one\n\t\t{\n\t\t\treturn end($this->connections);\n\t\t}\n\n\
174
+ \t\t// You should actually connect before trying to get a connection...\n\t\t\
175
+ throw new InvalidArgumentException('The specified connection does not exist');\n\
176
+ \t}"
177
+ - "func (c *Context) Untrack(class, id string) error {\n\tfullID := payload.BuildID(class,\
178
+ \ id)\n\tlogger.Tracef(\"Calling untrack on payload context %q\", fullID)\n\n\t\
179
+ res, err := c.api.Untrack(fullID)\n\tif err != nil {\n\t\treturn errors.Trace(err)\n\
180
+ \t}\n\t// TODO(ericsnow) We should not ignore a 0-len result.\n\tif len(res) >\
181
+ \ 0 && res[0].Error != nil {\n\t\treturn errors.Trace(res[0].Error)\n\t}\n\tdelete(c.payloads,\
182
+ \ id)\n\n\treturn nil\n}"
183
+ - source_sentence: /* PRIVATE
184
+ sentences:
185
+ - "void activate(ProtocolVersion helloVersion) throws IOException {\n if\
186
+ \ (activeProtocols == null) {\n activeProtocols = getActiveProtocols();\n\
187
+ \ }\n\n if (activeProtocols.collection().isEmpty() ||\n \
188
+ \ activeProtocols.max.v == ProtocolVersion.NONE.v) {\n throw\
189
+ \ new SSLHandshakeException(\n \"No appropriate protocol (protocol\
190
+ \ is disabled or \" +\n \"cipher suites are inappropriate)\"\
191
+ );\n }\n\n if (activeCipherSuites == null) {\n activeCipherSuites\
192
+ \ = getActiveCipherSuites();\n }\n\n if (activeCipherSuites.collection().isEmpty())\
193
+ \ {\n throw new SSLHandshakeException(\"No appropriate cipher suite\"\
194
+ );\n }\n\n // temporary protocol version until the actual protocol\
195
+ \ version\n // is negotiated in the Hello exchange. This affects the record\n\
196
+ \ // version we sent with the ClientHello.\n if (!isInitialHandshake)\
197
+ \ {\n protocolVersion = activeProtocolVersion;\n } else {\n\
198
+ \ protocolVersion = activeProtocols.max;\n }\n\n if (helloVersion\
199
+ \ == null || helloVersion.v == ProtocolVersion.NONE.v) {\n helloVersion\
200
+ \ = activeProtocols.helloVersion;\n }\n\n // We accumulate digests\
201
+ \ of the handshake messages so that\n // we can read/write CertificateVerify\
202
+ \ and Finished messages,\n // getting assurance against some particular\
203
+ \ active attacks.\n Set<String> localSupportedHashAlgorithms =\n \
204
+ \ SignatureAndHashAlgorithm.getHashAlgorithmNames(\n getLocalSupportedSignAlgs());\n\
205
+ \ handshakeHash = new HandshakeHash(!isClient, needCertVerify,\n \
206
+ \ localSupportedHashAlgorithms);\n\n // Generate handshake input/output\
207
+ \ stream.\n input = new HandshakeInStream(handshakeHash);\n if (conn\
208
+ \ != null) {\n output = new HandshakeOutStream(protocolVersion, helloVersion,\n\
209
+ \ handshakeHash, conn);\n conn.getAppInputStream().r.setHandshakeHash(handshakeHash);\n\
210
+ \ conn.getAppInputStream().r.setHelloVersion(helloVersion);\n \
211
+ \ conn.getAppOutputStream().r.setHelloVersion(helloVersion);\n }\
212
+ \ else {\n output = new HandshakeOutStream(protocolVersion, helloVersion,\n\
213
+ \ handshakeHash, engine);\n \
214
+ \ engine.inputRecord.setHandshakeHash(handshakeHash);\n engine.inputRecord.setHelloVersion(helloVersion);\n\
215
+ \ engine.outputRecord.setHelloVersion(helloVersion);\n }\n\n\
216
+ \ // move state to activated\n state = -1;\n }"
217
+ - "function _error(coreIndex, cores) {\n var errMsg =\n '[cpu-stats] Error:\
218
+ \ Core \"' + coreIndex + '\" not found, use one of ' +\n '[0, ' + (cores -\
219
+ \ 1) + '], ' +\n 'since your system has a total of ' + cores + ' cores.';\n\
220
+ \ console.log(errMsg);\n}"
221
+ - "function _drawLine(v0, v1, color) {\n var p = new Primitive();\n\n \
222
+ \ p.vertices = [v0, v1];\n p.color = toColor(color);\n\n renderer.addPrimitive(p);\n\
223
+ \ }"
224
+ pipeline_tag: sentence-similarity
225
+ library_name: sentence-transformers
226
+ ---
227
+
228
+ # SentenceTransformer based on Shuu12121/CodeModernBERT-Crow
229
+
230
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Shuu12121/CodeModernBERT-Crow](https://huggingface.co/Shuu12121/CodeModernBERT-Crow). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
231
+
232
+ ## Model Details
233
+
234
+ ### Model Description
235
+ - **Model Type:** Sentence Transformer
236
+ - **Base model:** [Shuu12121/CodeModernBERT-Crow](https://huggingface.co/Shuu12121/CodeModernBERT-Crow) <!-- at revision fa8af97f22c9bf631506435c994e724f82747e67 -->
237
+ - **Maximum Sequence Length:** 1024 tokens
238
+ - **Output Dimensionality:** 768 dimensions
239
+ - **Similarity Function:** Cosine Similarity
240
+ <!-- - **Training Dataset:** Unknown -->
241
+ <!-- - **Language:** Unknown -->
242
+ <!-- - **License:** Unknown -->
243
+
244
+ ### Model Sources
245
+
246
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
247
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
248
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
249
+
250
+ ### Full Model Architecture
251
+
252
+ ```
253
+ SentenceTransformer(
254
+ (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
255
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
256
+ )
257
+ ```
258
+
259
+ ## Usage
260
+
261
+ ### Direct Usage (Sentence Transformers)
262
+
263
+ First install the Sentence Transformers library:
264
+
265
+ ```bash
266
+ pip install -U sentence-transformers
267
+ ```
268
+
269
+ Then you can load this model and run inference.
270
+ ```python
271
+ from sentence_transformers import SentenceTransformer
272
+
273
+ # Download from the 🤗 Hub
274
+ model = SentenceTransformer("sentence_transformers_model_id")
275
+ # Run inference
276
+ sentences = [
277
+ '/* PRIVATE',
278
+ 'function _error(coreIndex, cores) {\n var errMsg =\n \'[cpu-stats] Error: Core "\' + coreIndex + \'" not found, use one of \' +\n \'[0, \' + (cores - 1) + \'], \' +\n \'since your system has a total of \' + cores + \' cores.\';\n console.log(errMsg);\n}',
279
+ 'function _drawLine(v0, v1, color) {\n var p = new Primitive();\n\n p.vertices = [v0, v1];\n p.color = toColor(color);\n\n renderer.addPrimitive(p);\n }',
280
+ ]
281
+ embeddings = model.encode(sentences)
282
+ print(embeddings.shape)
283
+ # [3, 768]
284
+
285
+ # Get the similarity scores for the embeddings
286
+ similarities = model.similarity(embeddings, embeddings)
287
+ print(similarities.shape)
288
+ # [3, 3]
289
+ ```
290
+
291
+ <!--
292
+ ### Direct Usage (Transformers)
293
+
294
+ <details><summary>Click to see the direct usage in Transformers</summary>
295
+
296
+ </details>
297
+ -->
298
+
299
+ <!--
300
+ ### Downstream Usage (Sentence Transformers)
301
+
302
+ You can finetune this model on your own dataset.
303
+
304
+ <details><summary>Click to expand</summary>
305
+
306
+ </details>
307
+ -->
308
+
309
+ <!--
310
+ ### Out-of-Scope Use
311
+
312
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
313
+ -->
314
+
315
+ <!--
316
+ ## Bias, Risks and Limitations
317
+
318
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
319
+ -->
320
+
321
+ <!--
322
+ ### Recommendations
323
+
324
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
325
+ -->
326
+
327
+ ## Training Details
328
+
329
+ ### Training Dataset
330
+
331
+ #### Unnamed Dataset
332
+
333
+ * Size: 2,022,217 training samples
334
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
335
+ * Approximate statistics based on the first 1000 samples:
336
+ | | sentence_0 | sentence_1 | label |
337
+ |:--------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------|
338
+ | type | string | string | float |
339
+ | details | <ul><li>min: 3 tokens</li><li>mean: 48.56 tokens</li><li>max: 1024 tokens</li></ul> | <ul><li>min: 30 tokens</li><li>mean: 171.79 tokens</li><li>max: 1024 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
340
+ * Samples:
341
+ | sentence_0 | sentence_1 | label |
342
+ |:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
343
+ | <code>// GetNodeID returns the NodeID field if it's non-nil, zero value otherwise.</code> | <code>func (a *App) GetNodeID() string {<br> if a == nil || a.NodeID == nil {<br> return ""<br> }<br> return *a.NodeID<br>}</code> | <code>1.0</code> |
344
+ | <code>// _NET_WM_STRUT_PARTIAL set</code> | <code>func WmStrutPartialSet(xu *xgbutil.XUtil, win xproto.Window,<br> struts *WmStrutPartial) error {<br><br> rawStruts := make([]uint, 12)<br> rawStruts[0] = struts.Left<br> rawStruts[1] = struts.Right<br> rawStruts[2] = struts.Top<br> rawStruts[3] = struts.Bottom<br> rawStruts[4] = struts.LeftStartY<br> rawStruts[5] = struts.LeftEndY<br> rawStruts[6] = struts.RightStartY<br> rawStruts[7] = struts.RightEndY<br> rawStruts[8] = struts.TopStartX<br> rawStruts[9] = struts.TopEndX<br> rawStruts[10] = struts.BottomStartX<br> rawStruts[11] = struts.BottomEndX<br><br> return xprop.ChangeProp32(xu, win, "_NET_WM_STRUT_PARTIAL", "CARDINAL",<br> rawStruts...)<br>}</code> | <code>1.0</code> |
345
+ | <code>//GetQyAccessToken 获取access_token</code> | <code>func (ctx *Context) GetQyAccessToken() (accessToken string, err error) {<br> ctx.accessTokenLock.Lock()<br> defer ctx.accessTokenLock.Unlock()<br><br> accessTokenCacheKey := fmt.Sprintf("qy_access_token_%s", ctx.AppID)<br> val := ctx.Cache.Get(accessTokenCacheKey)<br> if val != nil {<br> accessToken = val.(string)<br> return<br> }<br><br> //从微信服务器获取<br> var resQyAccessToken ResQyAccessToken<br> resQyAccessToken, err = ctx.GetQyAccessTokenFromServer()<br> if err != nil {<br> return<br> }<br><br> accessToken = resQyAccessToken.AccessToken<br> return<br>}</code> | <code>1.0</code> |
346
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
347
+ ```json
348
+ {
349
+ "scale": 20.0,
350
+ "similarity_fct": "cos_sim"
351
+ }
352
+ ```
353
+
354
+ ### Training Hyperparameters
355
+ #### Non-Default Hyperparameters
356
+
357
+ - `per_device_train_batch_size`: 256
358
+ - `per_device_eval_batch_size`: 256
359
+ - `num_train_epochs`: 5
360
+ - `fp16`: True
361
+ - `multi_dataset_batch_sampler`: round_robin
362
+
363
+ #### All Hyperparameters
364
+ <details><summary>Click to expand</summary>
365
+
366
+ - `overwrite_output_dir`: False
367
+ - `do_predict`: False
368
+ - `eval_strategy`: no
369
+ - `prediction_loss_only`: True
370
+ - `per_device_train_batch_size`: 256
371
+ - `per_device_eval_batch_size`: 256
372
+ - `per_gpu_train_batch_size`: None
373
+ - `per_gpu_eval_batch_size`: None
374
+ - `gradient_accumulation_steps`: 1
375
+ - `eval_accumulation_steps`: None
376
+ - `torch_empty_cache_steps`: None
377
+ - `learning_rate`: 5e-05
378
+ - `weight_decay`: 0.0
379
+ - `adam_beta1`: 0.9
380
+ - `adam_beta2`: 0.999
381
+ - `adam_epsilon`: 1e-08
382
+ - `max_grad_norm`: 1
383
+ - `num_train_epochs`: 5
384
+ - `max_steps`: -1
385
+ - `lr_scheduler_type`: linear
386
+ - `lr_scheduler_kwargs`: {}
387
+ - `warmup_ratio`: 0.0
388
+ - `warmup_steps`: 0
389
+ - `log_level`: passive
390
+ - `log_level_replica`: warning
391
+ - `log_on_each_node`: True
392
+ - `logging_nan_inf_filter`: True
393
+ - `save_safetensors`: True
394
+ - `save_on_each_node`: False
395
+ - `save_only_model`: False
396
+ - `restore_callback_states_from_checkpoint`: False
397
+ - `no_cuda`: False
398
+ - `use_cpu`: False
399
+ - `use_mps_device`: False
400
+ - `seed`: 42
401
+ - `data_seed`: None
402
+ - `jit_mode_eval`: False
403
+ - `use_ipex`: False
404
+ - `bf16`: False
405
+ - `fp16`: True
406
+ - `fp16_opt_level`: O1
407
+ - `half_precision_backend`: auto
408
+ - `bf16_full_eval`: False
409
+ - `fp16_full_eval`: False
410
+ - `tf32`: None
411
+ - `local_rank`: 0
412
+ - `ddp_backend`: None
413
+ - `tpu_num_cores`: None
414
+ - `tpu_metrics_debug`: False
415
+ - `debug`: []
416
+ - `dataloader_drop_last`: False
417
+ - `dataloader_num_workers`: 0
418
+ - `dataloader_prefetch_factor`: None
419
+ - `past_index`: -1
420
+ - `disable_tqdm`: False
421
+ - `remove_unused_columns`: True
422
+ - `label_names`: None
423
+ - `load_best_model_at_end`: False
424
+ - `ignore_data_skip`: False
425
+ - `fsdp`: []
426
+ - `fsdp_min_num_params`: 0
427
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
428
+ - `tp_size`: 0
429
+ - `fsdp_transformer_layer_cls_to_wrap`: None
430
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
431
+ - `deepspeed`: None
432
+ - `label_smoothing_factor`: 0.0
433
+ - `optim`: adamw_torch
434
+ - `optim_args`: None
435
+ - `adafactor`: False
436
+ - `group_by_length`: False
437
+ - `length_column_name`: length
438
+ - `ddp_find_unused_parameters`: None
439
+ - `ddp_bucket_cap_mb`: None
440
+ - `ddp_broadcast_buffers`: False
441
+ - `dataloader_pin_memory`: True
442
+ - `dataloader_persistent_workers`: False
443
+ - `skip_memory_metrics`: True
444
+ - `use_legacy_prediction_loop`: False
445
+ - `push_to_hub`: False
446
+ - `resume_from_checkpoint`: None
447
+ - `hub_model_id`: None
448
+ - `hub_strategy`: every_save
449
+ - `hub_private_repo`: None
450
+ - `hub_always_push`: False
451
+ - `gradient_checkpointing`: False
452
+ - `gradient_checkpointing_kwargs`: None
453
+ - `include_inputs_for_metrics`: False
454
+ - `include_for_metrics`: []
455
+ - `eval_do_concat_batches`: True
456
+ - `fp16_backend`: auto
457
+ - `push_to_hub_model_id`: None
458
+ - `push_to_hub_organization`: None
459
+ - `mp_parameters`:
460
+ - `auto_find_batch_size`: False
461
+ - `full_determinism`: False
462
+ - `torchdynamo`: None
463
+ - `ray_scope`: last
464
+ - `ddp_timeout`: 1800
465
+ - `torch_compile`: False
466
+ - `torch_compile_backend`: None
467
+ - `torch_compile_mode`: None
468
+ - `include_tokens_per_second`: False
469
+ - `include_num_input_tokens_seen`: False
470
+ - `neftune_noise_alpha`: None
471
+ - `optim_target_modules`: None
472
+ - `batch_eval_metrics`: False
473
+ - `eval_on_start`: False
474
+ - `use_liger_kernel`: False
475
+ - `eval_use_gather_object`: False
476
+ - `average_tokens_across_devices`: False
477
+ - `prompts`: None
478
+ - `batch_sampler`: batch_sampler
479
+ - `multi_dataset_batch_sampler`: round_robin
480
+
481
+ </details>
482
+
483
+ ### Training Logs
484
+ | Epoch | Step | Training Loss |
485
+ |:------:|:-----:|:-------------:|
486
+ | 0.0633 | 500 | 0.8015 |
487
+ | 0.1266 | 1000 | 0.1036 |
488
+ | 0.1899 | 1500 | 0.0973 |
489
+ | 0.2532 | 2000 | 0.0921 |
490
+ | 0.3165 | 2500 | 0.0876 |
491
+ | 0.3797 | 3000 | 0.0861 |
492
+ | 0.4430 | 3500 | 0.0843 |
493
+ | 0.5063 | 4000 | 0.0841 |
494
+ | 0.5696 | 4500 | 0.0788 |
495
+ | 0.6329 | 5000 | 0.0794 |
496
+ | 0.6962 | 5500 | 0.0782 |
497
+ | 0.7595 | 6000 | 0.077 |
498
+ | 0.8228 | 6500 | 0.0749 |
499
+ | 0.8861 | 7000 | 0.0749 |
500
+ | 0.9494 | 7500 | 0.0724 |
501
+ | 1.0127 | 8000 | 0.0658 |
502
+ | 1.0759 | 8500 | 0.0385 |
503
+ | 1.1392 | 9000 | 0.0381 |
504
+ | 1.2025 | 9500 | 0.0383 |
505
+ | 1.2658 | 10000 | 0.0381 |
506
+ | 1.3291 | 10500 | 0.0382 |
507
+ | 1.3924 | 11000 | 0.0384 |
508
+ | 1.4557 | 11500 | 0.0384 |
509
+ | 1.5190 | 12000 | 0.039 |
510
+ | 1.5823 | 12500 | 0.0391 |
511
+ | 1.6456 | 13000 | 0.0401 |
512
+ | 1.7089 | 13500 | 0.0383 |
513
+ | 1.7722 | 14000 | 0.0392 |
514
+ | 1.8354 | 14500 | 0.0371 |
515
+ | 1.8987 | 15000 | 0.0387 |
516
+ | 1.9620 | 15500 | 0.0385 |
517
+ | 2.0253 | 16000 | 0.0298 |
518
+ | 2.0886 | 16500 | 0.0171 |
519
+ | 2.1519 | 17000 | 0.0174 |
520
+ | 2.2152 | 17500 | 0.0171 |
521
+ | 2.2785 | 18000 | 0.0169 |
522
+ | 2.3418 | 18500 | 0.0174 |
523
+ | 2.4051 | 19000 | 0.0177 |
524
+ | 2.4684 | 19500 | 0.0175 |
525
+ | 2.5316 | 20000 | 0.0171 |
526
+ | 2.5949 | 20500 | 0.017 |
527
+ | 2.6582 | 21000 | 0.0172 |
528
+ | 2.7215 | 21500 | 0.0178 |
529
+ | 2.7848 | 22000 | 0.0167 |
530
+ | 2.8481 | 22500 | 0.0176 |
531
+ | 2.9114 | 23000 | 0.0175 |
532
+ | 2.9747 | 23500 | 0.0178 |
533
+ | 3.0380 | 24000 | 0.0129 |
534
+ | 3.1013 | 24500 | 0.0099 |
535
+ | 3.1646 | 25000 | 0.0097 |
536
+ | 3.2278 | 25500 | 0.0097 |
537
+ | 3.2911 | 26000 | 0.0101 |
538
+ | 3.3544 | 26500 | 0.0098 |
539
+ | 3.4177 | 27000 | 0.0099 |
540
+ | 3.4810 | 27500 | 0.0096 |
541
+ | 3.5443 | 28000 | 0.0095 |
542
+ | 3.6076 | 28500 | 0.0094 |
543
+ | 3.6709 | 29000 | 0.0097 |
544
+ | 3.7342 | 29500 | 0.01 |
545
+ | 3.7975 | 30000 | 0.0096 |
546
+ | 3.8608 | 30500 | 0.0098 |
547
+ | 3.9241 | 31000 | 0.0095 |
548
+ | 3.9873 | 31500 | 0.0094 |
549
+ | 4.0506 | 32000 | 0.0079 |
550
+ | 4.1139 | 32500 | 0.0074 |
551
+ | 4.1772 | 33000 | 0.0072 |
552
+ | 4.2405 | 33500 | 0.0073 |
553
+ | 4.3038 | 34000 | 0.0071 |
554
+ | 4.3671 | 34500 | 0.0073 |
555
+ | 4.4304 | 35000 | 0.007 |
556
+ | 4.4937 | 35500 | 0.0072 |
557
+ | 4.5570 | 36000 | 0.0071 |
558
+ | 4.6203 | 36500 | 0.0071 |
559
+ | 4.6835 | 37000 | 0.0072 |
560
+ | 4.7468 | 37500 | 0.0072 |
561
+ | 4.8101 | 38000 | 0.0069 |
562
+ | 4.8734 | 38500 | 0.007 |
563
+ | 4.9367 | 39000 | 0.007 |
564
+ | 5.0 | 39500 | 0.007 |
565
+
566
+
567
+ ### Framework Versions
568
+ - Python: 3.11.11
569
+ - Sentence Transformers: 3.4.1
570
+ - Transformers: 4.51.3
571
+ - PyTorch: 2.5.1+cu124
572
+ - Accelerate: 1.3.0
573
+ - Datasets: 3.5.0
574
+ - Tokenizers: 0.21.0
575
+
576
+ ## Citation
577
+
578
+ ### BibTeX
579
+
580
+ #### Sentence Transformers
581
+ ```bibtex
582
+ @inproceedings{reimers-2019-sentence-bert,
583
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
584
+ author = "Reimers, Nils and Gurevych, Iryna",
585
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
586
+ month = "11",
587
+ year = "2019",
588
+ publisher = "Association for Computational Linguistics",
589
+ url = "https://arxiv.org/abs/1908.10084",
590
+ }
591
+ ```
592
+
593
+ #### MultipleNegativesRankingLoss
594
+ ```bibtex
595
+ @misc{henderson2017efficient,
596
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
597
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
598
+ year={2017},
599
+ eprint={1705.00652},
600
+ archivePrefix={arXiv},
601
+ primaryClass={cs.CL}
602
+ }
603
+ ```
604
+
605
+ <!--
606
+ ## Glossary
607
+
608
+ *Clearly define terms in order to be accessible across audiences.*
609
+ -->
610
+
611
+ <!--
612
+ ## Model Card Authors
613
+
614
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
615
+ -->
616
+
617
+ <!--
618
+ ## Model Card Contact
619
+
620
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
621
+ -->
added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "</s>": 50001,
3
+ "<mask>": 50003,
4
+ "<s>": 50000,
5
+ "<unk>": 50002
6
+ }
config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModernBertModel"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "bos_token_id": 50000,
9
+ "classifier_activation": "gelu",
10
+ "classifier_bias": false,
11
+ "classifier_dropout": 0.0,
12
+ "classifier_pooling": "cls",
13
+ "cls_token_id": 50281,
14
+ "decoder_bias": true,
15
+ "deterministic_flash_attn": false,
16
+ "embedding_dropout": 0.0,
17
+ "eos_token_id": 50001,
18
+ "global_attn_every_n_layers": 3,
19
+ "global_rope_theta": 160000.0,
20
+ "hidden_activation": "gelu",
21
+ "hidden_dropout_prob": 0.1,
22
+ "hidden_size": 768,
23
+ "initializer_cutoff_factor": 2.0,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 3072,
26
+ "local_attention": 128,
27
+ "local_attention_rope_theta": 10000,
28
+ "local_attention_window": 128,
29
+ "local_rope_theta": 10000.0,
30
+ "max_position_embeddings": 8192,
31
+ "mlp_bias": false,
32
+ "mlp_dropout": 0.0,
33
+ "model_type": "modernbert",
34
+ "norm_bias": false,
35
+ "norm_eps": 1e-05,
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 12,
38
+ "pad_token_id": 0,
39
+ "repad_logits_with_grad": false,
40
+ "rope_theta": 160000,
41
+ "sep_token_id": 50282,
42
+ "sparse_pred_ignore_index": -100,
43
+ "sparse_prediction": false,
44
+ "torch_dtype": "float32",
45
+ "transformers_version": "4.51.3",
46
+ "type_vocab_size": 2,
47
+ "vocab_size": 50004
48
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13ed3dfbdd7c3c6b2ec6ef6b78415c437fae28dd14d0eaf1111d5e5e10baba11
3
+ size 606681112
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 1024,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "[PAD]",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "[UNK]",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "[CLS]",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "[SEP]",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "[MASK]",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "50000": {
45
+ "content": "<s>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "50001": {
53
+ "content": "</s>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "50002": {
61
+ "content": "<unk>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "50003": {
69
+ "content": "<mask>",
70
+ "lstrip": true,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ }
76
+ },
77
+ "bos_token": "<s>",
78
+ "clean_up_tokenization_spaces": false,
79
+ "cls_token": "<s>",
80
+ "eos_token": "</s>",
81
+ "errors": "replace",
82
+ "extra_special_tokens": {},
83
+ "mask_token": "<mask>",
84
+ "max_length": null,
85
+ "model_max_length": 1000000000000000019884624838656,
86
+ "pad_to_multiple_of": null,
87
+ "pad_token": "[PAD]",
88
+ "pad_token_type_id": 0,
89
+ "padding_side": "right",
90
+ "sep_token": "</s>",
91
+ "stride": 0,
92
+ "tokenizer_class": "RobertaTokenizer",
93
+ "trim_offsets": true,
94
+ "truncation_side": "right",
95
+ "truncation_strategy": "longest_first",
96
+ "unk_token": "<unk>"
97
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff