File size: 5,380 Bytes
a3e7eab a90bd64 a3e7eab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
---
library_name: transformers
license: apache-2.0
base_model: timm/efficientformer_l1.snap_dist_in1k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: efficientformer_l1.snap_dist_in1k_rice-leaf-disease-augmented-v4_v5_fft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# efficientformer_l1.snap_dist_in1k_rice-leaf-disease-augmented-v4_v5_fft
This model is a fine-tuned version of [timm/efficientformer_l1.snap_dist_in1k](https://huggingface.co/timm/efficientformer_l1.snap_dist_in1k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4269
- Accuracy: 0.9060
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 256
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0721 | 0.5 | 64 | 2.0503 | 0.1812 |
| 1.9705 | 1.0 | 128 | 1.8812 | 0.4128 |
| 1.7172 | 1.5 | 192 | 1.5160 | 0.5570 |
| 1.3261 | 2.0 | 256 | 1.0740 | 0.6779 |
| 0.8641 | 2.5 | 320 | 0.7390 | 0.7718 |
| 0.5772 | 3.0 | 384 | 0.5308 | 0.8289 |
| 0.3856 | 3.5 | 448 | 0.4667 | 0.8389 |
| 0.2981 | 4.0 | 512 | 0.4052 | 0.8523 |
| 0.213 | 4.5 | 576 | 0.3778 | 0.8591 |
| 0.1795 | 5.0 | 640 | 0.3505 | 0.8792 |
| 0.1435 | 5.5 | 704 | 0.3455 | 0.8859 |
| 0.1309 | 6.0 | 768 | 0.3440 | 0.8826 |
| 0.1243 | 6.5 | 832 | 0.3309 | 0.8893 |
| 0.1142 | 7.0 | 896 | 0.3252 | 0.8758 |
| 0.0837 | 7.5 | 960 | 0.3259 | 0.8893 |
| 0.059 | 8.0 | 1024 | 0.3085 | 0.9060 |
| 0.0296 | 8.5 | 1088 | 0.2963 | 0.8960 |
| 0.0208 | 9.0 | 1152 | 0.3109 | 0.8993 |
| 0.0092 | 9.5 | 1216 | 0.3261 | 0.9027 |
| 0.0098 | 10.0 | 1280 | 0.3265 | 0.8960 |
| 0.0056 | 10.5 | 1344 | 0.3280 | 0.9027 |
| 0.0068 | 11.0 | 1408 | 0.3289 | 0.9060 |
| 0.005 | 11.5 | 1472 | 0.3590 | 0.8893 |
| 0.0058 | 12.0 | 1536 | 0.3379 | 0.9060 |
| 0.0025 | 12.5 | 1600 | 0.3744 | 0.9094 |
| 0.0026 | 13.0 | 1664 | 0.3851 | 0.9060 |
| 0.0016 | 13.5 | 1728 | 0.3950 | 0.9027 |
| 0.0011 | 14.0 | 1792 | 0.3766 | 0.9128 |
| 0.0007 | 14.5 | 1856 | 0.3729 | 0.9161 |
| 0.0011 | 15.0 | 1920 | 0.3591 | 0.9027 |
| 0.0006 | 15.5 | 1984 | 0.3769 | 0.8993 |
| 0.0006 | 16.0 | 2048 | 0.3660 | 0.9094 |
| 0.0005 | 16.5 | 2112 | 0.3687 | 0.9195 |
| 0.0006 | 17.0 | 2176 | 0.3933 | 0.9060 |
| 0.0006 | 17.5 | 2240 | 0.3849 | 0.9128 |
| 0.0006 | 18.0 | 2304 | 0.4178 | 0.9027 |
| 0.0009 | 18.5 | 2368 | 0.4092 | 0.9027 |
| 0.0002 | 19.0 | 2432 | 0.4117 | 0.9094 |
| 0.0003 | 19.5 | 2496 | 0.4075 | 0.9060 |
| 0.0003 | 20.0 | 2560 | 0.4116 | 0.9094 |
| 0.0002 | 20.5 | 2624 | 0.3974 | 0.9094 |
| 0.0004 | 21.0 | 2688 | 0.4266 | 0.8993 |
| 0.0004 | 21.5 | 2752 | 0.4172 | 0.9128 |
| 0.0004 | 22.0 | 2816 | 0.4450 | 0.9027 |
| 0.0003 | 22.5 | 2880 | 0.4505 | 0.9060 |
| 0.0002 | 23.0 | 2944 | 0.4213 | 0.9027 |
| 0.0001 | 23.5 | 3008 | 0.4285 | 0.9027 |
| 0.0001 | 24.0 | 3072 | 0.4368 | 0.9027 |
| 0.0002 | 24.5 | 3136 | 0.4330 | 0.9060 |
| 0.0002 | 25.0 | 3200 | 0.4294 | 0.9060 |
| 0.0001 | 25.5 | 3264 | 0.4395 | 0.9027 |
| 0.0006 | 26.0 | 3328 | 0.4304 | 0.9060 |
| 0.0001 | 26.5 | 3392 | 0.4203 | 0.9161 |
| 0.0001 | 27.0 | 3456 | 0.4403 | 0.9094 |
| 0.0002 | 27.5 | 3520 | 0.4447 | 0.9027 |
| 0.0001 | 28.0 | 3584 | 0.4348 | 0.9094 |
| 0.0001 | 28.5 | 3648 | 0.4200 | 0.9094 |
| 0.0001 | 29.0 | 3712 | 0.4340 | 0.9094 |
| 0.0001 | 29.5 | 3776 | 0.4402 | 0.9094 |
| 0.0001 | 30.0 | 3840 | 0.4269 | 0.9060 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.1
|