File size: 5,380 Bytes
a3e7eab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a90bd64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3e7eab
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
library_name: transformers
license: apache-2.0
base_model: timm/efficientformer_l1.snap_dist_in1k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: efficientformer_l1.snap_dist_in1k_rice-leaf-disease-augmented-v4_v5_fft
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# efficientformer_l1.snap_dist_in1k_rice-leaf-disease-augmented-v4_v5_fft

This model is a fine-tuned version of [timm/efficientformer_l1.snap_dist_in1k](https://huggingface.co/timm/efficientformer_l1.snap_dist_in1k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4269
- Accuracy: 0.9060

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 256
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0721        | 0.5   | 64   | 2.0503          | 0.1812   |
| 1.9705        | 1.0   | 128  | 1.8812          | 0.4128   |
| 1.7172        | 1.5   | 192  | 1.5160          | 0.5570   |
| 1.3261        | 2.0   | 256  | 1.0740          | 0.6779   |
| 0.8641        | 2.5   | 320  | 0.7390          | 0.7718   |
| 0.5772        | 3.0   | 384  | 0.5308          | 0.8289   |
| 0.3856        | 3.5   | 448  | 0.4667          | 0.8389   |
| 0.2981        | 4.0   | 512  | 0.4052          | 0.8523   |
| 0.213         | 4.5   | 576  | 0.3778          | 0.8591   |
| 0.1795        | 5.0   | 640  | 0.3505          | 0.8792   |
| 0.1435        | 5.5   | 704  | 0.3455          | 0.8859   |
| 0.1309        | 6.0   | 768  | 0.3440          | 0.8826   |
| 0.1243        | 6.5   | 832  | 0.3309          | 0.8893   |
| 0.1142        | 7.0   | 896  | 0.3252          | 0.8758   |
| 0.0837        | 7.5   | 960  | 0.3259          | 0.8893   |
| 0.059         | 8.0   | 1024 | 0.3085          | 0.9060   |
| 0.0296        | 8.5   | 1088 | 0.2963          | 0.8960   |
| 0.0208        | 9.0   | 1152 | 0.3109          | 0.8993   |
| 0.0092        | 9.5   | 1216 | 0.3261          | 0.9027   |
| 0.0098        | 10.0  | 1280 | 0.3265          | 0.8960   |
| 0.0056        | 10.5  | 1344 | 0.3280          | 0.9027   |
| 0.0068        | 11.0  | 1408 | 0.3289          | 0.9060   |
| 0.005         | 11.5  | 1472 | 0.3590          | 0.8893   |
| 0.0058        | 12.0  | 1536 | 0.3379          | 0.9060   |
| 0.0025        | 12.5  | 1600 | 0.3744          | 0.9094   |
| 0.0026        | 13.0  | 1664 | 0.3851          | 0.9060   |
| 0.0016        | 13.5  | 1728 | 0.3950          | 0.9027   |
| 0.0011        | 14.0  | 1792 | 0.3766          | 0.9128   |
| 0.0007        | 14.5  | 1856 | 0.3729          | 0.9161   |
| 0.0011        | 15.0  | 1920 | 0.3591          | 0.9027   |
| 0.0006        | 15.5  | 1984 | 0.3769          | 0.8993   |
| 0.0006        | 16.0  | 2048 | 0.3660          | 0.9094   |
| 0.0005        | 16.5  | 2112 | 0.3687          | 0.9195   |
| 0.0006        | 17.0  | 2176 | 0.3933          | 0.9060   |
| 0.0006        | 17.5  | 2240 | 0.3849          | 0.9128   |
| 0.0006        | 18.0  | 2304 | 0.4178          | 0.9027   |
| 0.0009        | 18.5  | 2368 | 0.4092          | 0.9027   |
| 0.0002        | 19.0  | 2432 | 0.4117          | 0.9094   |
| 0.0003        | 19.5  | 2496 | 0.4075          | 0.9060   |
| 0.0003        | 20.0  | 2560 | 0.4116          | 0.9094   |
| 0.0002        | 20.5  | 2624 | 0.3974          | 0.9094   |
| 0.0004        | 21.0  | 2688 | 0.4266          | 0.8993   |
| 0.0004        | 21.5  | 2752 | 0.4172          | 0.9128   |
| 0.0004        | 22.0  | 2816 | 0.4450          | 0.9027   |
| 0.0003        | 22.5  | 2880 | 0.4505          | 0.9060   |
| 0.0002        | 23.0  | 2944 | 0.4213          | 0.9027   |
| 0.0001        | 23.5  | 3008 | 0.4285          | 0.9027   |
| 0.0001        | 24.0  | 3072 | 0.4368          | 0.9027   |
| 0.0002        | 24.5  | 3136 | 0.4330          | 0.9060   |
| 0.0002        | 25.0  | 3200 | 0.4294          | 0.9060   |
| 0.0001        | 25.5  | 3264 | 0.4395          | 0.9027   |
| 0.0006        | 26.0  | 3328 | 0.4304          | 0.9060   |
| 0.0001        | 26.5  | 3392 | 0.4203          | 0.9161   |
| 0.0001        | 27.0  | 3456 | 0.4403          | 0.9094   |
| 0.0002        | 27.5  | 3520 | 0.4447          | 0.9027   |
| 0.0001        | 28.0  | 3584 | 0.4348          | 0.9094   |
| 0.0001        | 28.5  | 3648 | 0.4200          | 0.9094   |
| 0.0001        | 29.0  | 3712 | 0.4340          | 0.9094   |
| 0.0001        | 29.5  | 3776 | 0.4402          | 0.9094   |
| 0.0001        | 30.0  | 3840 | 0.4269          | 0.9060   |



### Framework versions

- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.1