update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: results
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# results
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1638
|
20 |
+
- Accuracy: 0.975
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 32
|
41 |
+
- eval_batch_size: 32
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 50
|
46 |
+
- mixed_precision_training: Native AMP
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 1.3838 | 1.0 | 10 | 1.3907 | 0.225 |
|
53 |
+
| 1.3732 | 2.0 | 20 | 1.3872 | 0.2125 |
|
54 |
+
| 1.3354 | 3.0 | 30 | 1.3116 | 0.6625 |
|
55 |
+
| 1.2689 | 4.0 | 40 | 1.1820 | 0.6375 |
|
56 |
+
| 1.1179 | 5.0 | 50 | 1.0075 | 0.7 |
|
57 |
+
| 0.9962 | 6.0 | 60 | 0.8707 | 0.7125 |
|
58 |
+
| 0.8842 | 7.0 | 70 | 0.7485 | 0.7625 |
|
59 |
+
| 0.786 | 8.0 | 80 | 0.6326 | 0.8 |
|
60 |
+
| 0.6757 | 9.0 | 90 | 0.5995 | 0.8 |
|
61 |
+
| 0.6104 | 10.0 | 100 | 0.4835 | 0.825 |
|
62 |
+
| 0.5821 | 11.0 | 110 | 0.3886 | 0.9 |
|
63 |
+
| 0.4721 | 12.0 | 120 | 0.3935 | 0.8625 |
|
64 |
+
| 0.3976 | 13.0 | 130 | 0.3020 | 0.925 |
|
65 |
+
| 0.4483 | 14.0 | 140 | 0.3171 | 0.9 |
|
66 |
+
| 0.2665 | 15.0 | 150 | 0.3016 | 0.9125 |
|
67 |
+
| 0.2119 | 16.0 | 160 | 0.2722 | 0.925 |
|
68 |
+
| 0.3376 | 17.0 | 170 | 0.3163 | 0.8875 |
|
69 |
+
| 0.1518 | 18.0 | 180 | 0.2681 | 0.9125 |
|
70 |
+
| 0.1559 | 19.0 | 190 | 0.3074 | 0.925 |
|
71 |
+
| 0.1031 | 20.0 | 200 | 0.3526 | 0.8875 |
|
72 |
+
| 0.1557 | 21.0 | 210 | 0.2254 | 0.9375 |
|
73 |
+
| 0.0846 | 22.0 | 220 | 0.2410 | 0.9375 |
|
74 |
+
| 0.0733 | 23.0 | 230 | 0.2369 | 0.925 |
|
75 |
+
| 0.0964 | 24.0 | 240 | 0.2273 | 0.9375 |
|
76 |
+
| 0.0574 | 25.0 | 250 | 0.2066 | 0.95 |
|
77 |
+
| 0.1113 | 26.0 | 260 | 0.2941 | 0.9125 |
|
78 |
+
| 0.1313 | 27.0 | 270 | 0.2715 | 0.925 |
|
79 |
+
| 0.0851 | 28.0 | 280 | 0.1725 | 0.9625 |
|
80 |
+
| 0.0402 | 29.0 | 290 | 0.2221 | 0.95 |
|
81 |
+
| 0.1075 | 30.0 | 300 | 0.2199 | 0.9625 |
|
82 |
+
| 0.0418 | 31.0 | 310 | 0.1699 | 0.95 |
|
83 |
+
| 0.1869 | 32.0 | 320 | 0.2287 | 0.9625 |
|
84 |
+
| 0.0637 | 33.0 | 330 | 0.3230 | 0.9125 |
|
85 |
+
| 0.0483 | 34.0 | 340 | 0.1602 | 0.975 |
|
86 |
+
| 0.0891 | 35.0 | 350 | 0.1615 | 0.975 |
|
87 |
+
| 0.0359 | 36.0 | 360 | 0.1571 | 0.975 |
|
88 |
+
| 0.1006 | 37.0 | 370 | 0.1809 | 0.9625 |
|
89 |
+
| 0.0417 | 38.0 | 380 | 0.1923 | 0.9625 |
|
90 |
+
| 0.0346 | 39.0 | 390 | 0.2035 | 0.9625 |
|
91 |
+
| 0.0417 | 40.0 | 400 | 0.1737 | 0.9625 |
|
92 |
+
| 0.0396 | 41.0 | 410 | 0.1833 | 0.9625 |
|
93 |
+
| 0.0202 | 42.0 | 420 | 0.1946 | 0.9625 |
|
94 |
+
| 0.0137 | 43.0 | 430 | 0.1785 | 0.9625 |
|
95 |
+
| 0.0214 | 44.0 | 440 | 0.1841 | 0.9625 |
|
96 |
+
| 0.0304 | 45.0 | 450 | 0.1690 | 0.9625 |
|
97 |
+
| 0.0199 | 46.0 | 460 | 0.1646 | 0.975 |
|
98 |
+
| 0.0122 | 47.0 | 470 | 0.1622 | 0.975 |
|
99 |
+
| 0.0324 | 48.0 | 480 | 0.1615 | 0.975 |
|
100 |
+
| 0.0269 | 49.0 | 490 | 0.1625 | 0.975 |
|
101 |
+
| 0.0245 | 50.0 | 500 | 0.1638 | 0.975 |
|
102 |
+
|
103 |
+
|
104 |
+
### Framework versions
|
105 |
+
|
106 |
+
- Transformers 4.18.0
|
107 |
+
- Pytorch 1.11.0
|
108 |
+
- Datasets 2.1.0
|
109 |
+
- Tokenizers 0.12.1
|